剖析电商搜索要点并基于Es+Redis模拟电商搜索行为

电商搜索要点剖析

前言: 由于水平受限,该文章并不能深度去剖析真实电商搜索功能的底层,接下来的部分主要是我根据网页查询+ai问答总结而得 希望大家多多包涵,同时也欢迎纠错指正!


各大电商平台的搜索大致可分为三个阶段

1.Query理解:对于用户输入的关键字进行纠错、改写、扩展、分词等

2.召回阶段:根据查询词,从商品库中召回有效正确的商品候选集

3.排序阶段:给定召回商品候选集合,根据众多因子对商品排序


京东分享-电商搜索中语义检索与商品排序:https://zhuanlan.zhihu.com/p/465504164
论文:https://arxiv.org/pdf/2006.02282

图 1

淘宝搜索
相关论文:《Embedding-based Product Retrieval in Taobao Search》

图 2

Query理解阶段

目前各大电商搜索基本都应用了NLP(自然语言处理)技术,query阶段主要流程为:拼写纠错–>分词–>类目预测

阶段主要目的使用技术
拼写纠错修正用户拼音/别字/错字编辑距离、拼音映射、语言模型、BERT等
分词将连续文本切成有意义词单元词典分词、CRF、BiLSTM-CRF、BERT等
类目预测识别Query对应的商品类目TextCNN、FastText、BERT分类器、向量匹配

召回阶段

这个阶段主要基于Query阶段进行,如果用户主动选择了商品类目则根据用户所选进行召回,否则按照上一阶段类目预测进行类目筛选

多路召回

召回方式原理举例说明
关键词匹配召回倒排索引,基于分词匹配Query中含“耐克鞋”,命中耐克商品
类目召回通过类目ID匹配商品类目类目预测是“运动鞋”,召回该类商品
属性召回匹配颜色、尺码、功能等属性“夏季防滑”,召回“凉鞋”类商品
品牌召回品牌识别结果匹配商品品牌字段“苹果手机壳”,召回 Apple 的配件
向量召回Query 转成 Embedding 向量“网红同款裙子” → 语义检索相似商品
历史行为召回利用用户画像/点击历史你经常搜“iPhone壳” → 优先相关商品
同义词扩展召回Query改写扩展词匹配商品“牛仔裤”扩展为“牛仔长裤”、“jeans”

多路召回确保了商品尽可能命中,有效避免了搜索商品为空的情况


🧠 举个完整例子
当用户输入:苹果13手机可透明防摔
经过Query处理后得到

  • 品牌:苹果
  • 商品意图:配件->手机壳
  • 属性:透明、防摔
  • 类目预测:手机配件>手机壳

然后召回

通道类型召回商品
关键词召回命中“苹果”、“手机壳”
类目召回所有“手机壳”类目商品
属性召回带有“防摔”、“透明”标签的商品
品牌召回Apple 品牌下的配件
向量召回含有“保护壳”或“壳套”的近义商品

排序阶段

🧱 排序阶段的总体结构:

排序阶段一般会分成 三级排序(粗到精):

初排(粗排) → 精排(主排序) → 重排(个性化/多目标)


1️⃣ 初排(粗排 / pre-ranking)
  • 目的:快速过滤掉明显不相关或低质量商品,减少计算负担
  • 模型:轻量模型(如LR、Tree-based、Wide&Deep)
  • 特征:Query词命中数、类目匹配、价格过滤、是否违规等

2️⃣ 精排(主排序 / ranking)
  • 目的:主力打分,精细评估每个商品的价值

  • 模型:深度学习模型(CTR/CVR预测),如:

    • DNN、DSSM、DIN、DeepFM、Transformer
  • 特征举例

类别特征示例
Query特征Query长度、词性、意图类型
商品特征价格、销量、评价、品牌、库存
用户特征历史兴趣、性别、年龄、最近浏览行为等
用户-商品用户是否点击过该商品、用户是否收藏过等
Query-商品分词重合度、类目相关性、品牌一致性等
  • 目标:最大化CTR(点击率)或 GMV(成交额)

3️⃣ 重排(后排序 / re-ranking)
  • 目的:提升多目标表现,强化个性化、多样性

  • 操作内容

    • 加入冷启动保护、新品扶持、打散重复品牌
    • 引入上下文特征(如用户最近浏览行为)
    • 考虑业务规则:广告插入、黑名单屏蔽、活动优先等

📌 排序还要考虑的特殊场景:

  • 广告排序融合:搜索广告商品会和自然排序混合
  • 新商品冷启动保护:避免因点击少而排序靠后
  • 业务打分融合:平台可以插入指定商品、活动商品

Es+Redis模拟电商搜索

由于技术有限,这里就直接采用ik分词器进行分词,采用es进行模糊匹配,大家要是有更好改进的点可以在评论区分享呀,我也是最近刚学习了Es突发奇想做的小demo,效果在文章末有展示
Github地址:https://github.com/Aeroeia/ElasticSearch 大家要是这样觉得有用的话可以点个小星星呀

缓存搜索结果
同步数据
用户界面
Web服务器
Elasticsearch
Redis缓存
MySQL数据库

环境准备

  • Jdk11+
  • Maven
  • Redis
  • Mysql
  • Elasticsearch 7.x、ik分词器

es索引库结构

PUT /item 
{
  "settings": {
    "analysis": {
      "analyzer": {
        "suggest_analyzer": {
          "tokenizer": "keyword",
          "filter": ["lowercase", "trim"]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id": { "type": "keyword" },
      "name": {
        "type": "text",
        "analyzer": "ik_max_word" 
      },
      "brand": { 
        "type": "keyword"
      },
      "category": {
        "type": "keyword"
      },
      "suggest_keywords": {
        "type": "completion",
        "analyzer": "suggest_analyzer",
        "preserve_separators": false,
        "preserve_position_increments": false
      },
      "price": { "type": "integer" , "index": false},
      "image": { "type": "keyword" , "index": false}
    }
  }
}

Mysql中也基本是这些字段,只不过没有suggest_keywords

后端实现(SpringBoot+RestHighLevelClient+SpringCache(Redis))

Maven依赖

    <dependencies>
        <!-- Elasticsearch 客户端 -->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>7.12.1</version>
        </dependency>

        <!-- 数据库连接池 -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
            <version>1.2.1</version>
        </dependency>

        <!-- Redis依赖 -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>

        <!-- MySQL驱动 -->
        <dependency>
            <groupId>com.mysql</groupId>
            <artifactId>mysql-connector-j</artifactId>
            <scope>runtime</scope>
        </dependency>

        <!-- Spring Web -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <!-- Lombok -->
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.30</version>
        </dependency>

        <!-- MyBatis Plus -->
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.5.6</version>
        </dependency>

        <!-- Spring Boot 基础依赖 -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <!-- Spring Boot 测试依赖 -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
<!--        hutool工具包-->
        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.8.11</version>
        </dependency>
    </dependencies>

配置类

@Configuration
public class EsConfiguration {
    @Bean
    public RestHighLevelClient restHighLevelClient(){
        return new RestHighLevelClient(RestClient.builder(
                HttpHost.create("192.168.112.128:9200") //写成自己es的ip端口
        ));
    }
}

Controller

@RestController
@Slf4j
@RequestMapping("es")
@RequiredArgsConstructor
public class EsController {
    private final IItemService itemService;

    //用于获取搜索建议
    @GetMapping("/suggestions")
    public List<String> getSuggestions(@RequestParam String keyword){
        log.info("keyword:{}",keyword);
        return itemService.getSuggestions(keyword);
    }

    //查询商品接口
    @GetMapping("/search")
    public List<ItemVO> search(@RequestParam(required = false) String keyword, @RequestParam(required = false) String brand, @RequestParam(required = false) String category){
        log.info("keyword:{}",keyword);
        log.info("brand:{}",brand);
        log.info("category:{}",category);
        return itemService.search(keyword,brand,category);
    }
}

ServiceImpl

@Service
@Slf4j
@RequiredArgsConstructor
public class ItemServiceImpl extends ServiceImpl<ItemMapper, Item> implements IItemService {
    private final RestHighLevelClient client;

    //自定义字段
    private final String suggestionName = "sug";

    @Override
    @Cacheable(value = "suggestions",key = "#keyword")
    public List<String> getSuggestions(String keyword) {

        try {
            // 构建搜索建议请求
            SuggestBuilder sb = new SuggestBuilder();
            sb.addSuggestion(suggestionName,
                    SuggestBuilders.completionSuggestion("suggest_keywords")
                            .prefix(keyword)
                            .size(10) //最多十条建议
                            .skipDuplicates(true)
            );
            
            SearchSourceBuilder src = new SearchSourceBuilder().suggest(sb).size(0);
            SearchRequest req = new SearchRequest("item").source(src);

            
            // 执行搜索
            SearchResponse resp = client.search(req, RequestOptions.DEFAULT);
            log.info("搜索响应: {}", resp);
            
            // 解析建议结果
            CompletionSuggestion suggestion = resp.getSuggest().getSuggestion(suggestionName);
            if (suggestion == null) {
                log.warn("未找到建议结果");
                return new ArrayList<>();
            }
            
            List<String> suggestions = suggestion.getOptions().stream()
                    .map(option -> {
                        String str = option.getText().toString();
                        //关键词高亮
                        StringBuilder builder = new StringBuilder(str);
                        builder.insert(0,"<em>");
                        builder.insert(keyword.length()+4,"</em>");
                        return builder.toString();
                    })
                    .collect(Collectors.toList());
            return suggestions;
            
        } catch (IOException e) {
            log.error("搜索建议时发生错误", e);
            throw new RuntimeException("搜索建议失败", e);
        }
    }


    //同步mysql数据到es
    @Override
    public void syncData() {
        log.info("开始同步数据到ES");
        List<Item> list = this.list();
        BulkRequest request = new BulkRequest();
        
        for (Item item : list) {
            try {
                List<String> suggestions = SuggestionsUtil.getSuggestions(item.getName(), item.getBrand(), item.getCategory());
                EsItem esItem = BeanUtil.copyProperties(item, EsItem.class);
                
                // 构建completion suggester所需的特定格式
                Map<String, Object> suggest = new HashMap<>();
                suggest.put("input", suggestions);
                suggest.put("weight", 10);
                esItem.setSuggest_keywords(suggest);
                
                String jsonString = JSONUtil.toJsonStr(esItem);
                
                request.add(new IndexRequest("item")
                        .id(item.getId().toString())
                        .source(jsonString, XContentType.JSON));
                
            } catch (Exception e) {
                log.error("处理商品数据时发生错误, ID: {}", item.getId(), e);
            }
        }
        
        try {
            client.bulk(request, RequestOptions.DEFAULT);
            log.info("数据同步完成,共同步 {} 条记录", list.size());
        } catch (IOException e) {
            log.error("批量同步数据时发生错误", e);
            throw new RuntimeException("同步数据失败", e);
        }
    }

    @Override
    @Cacheable(value = "search",key = "#keyword+'-'+#brand+'-'+#category")
    public List<ItemVO> search(String keyword, String brand, String category) {
        SearchRequest request = new SearchRequest("item");
        //将keyword匹配name、brand、category
        BoolQueryBuilder boolQueryBuilder;
        if(StrUtil.isNotBlank(keyword)){
            boolQueryBuilder  = QueryBuilders.boolQuery().must(QueryBuilders.multiMatchQuery(
                    keyword, "name", "brand", "category"
            ));
        }
        else{
            boolQueryBuilder = QueryBuilders.boolQuery().must(QueryBuilders.matchAllQuery());
        }
        if(StrUtil.isNotBlank(brand)){
            boolQueryBuilder.filter(QueryBuilders.termQuery("brand", brand));
        }
        if(StrUtil.isNotBlank(category)){
            boolQueryBuilder.filter(QueryBuilders.termQuery("category", category));
        }
        request.source().query(boolQueryBuilder)
                .highlighter(SearchSourceBuilder.highlight().field("name"));
        request.source().size(10);
        SearchResponse response;
        try {
            response = client.search(request, RequestOptions.DEFAULT);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        SearchHit[] hits = response.getHits().getHits();
        List<ItemVO> list = new ArrayList<>();
        for(var hit : hits){
            Map<String, HighlightField> highlightFields = hit.getHighlightFields();
            HighlightField highlightField = highlightFields.get("name");
            String highlight = null;
            String source = hit.getSourceAsString();
            ItemVO itemVO = JSONUtil.toBean(source, ItemVO.class);
            if(highlightField!=null){
                highlight = highlightField.getFragments()[0].toString();
            }
            else{
                highlight = itemVO.getName();
            }
            itemVO.setHighlight(highlight);
            list.add(itemVO);
        }
        return list;

    }


}

生成suggest_keyword工具类


public class SuggestionsUtil {
    public static List<String> getSuggestions(String name, String brand, String category) {
        //简单按照名字中空格作为划分区
        List<String> suggestions = Arrays.stream(name.split("\\s+"))
                .filter(word -> word.length() >= 2)
                .distinct()
                .collect(Collectors.toList());

        // 将品牌和分类直接加入搜索建议(如果不为空)
        if (StrUtil.isNotBlank(brand)) {
            suggestions.add(brand.trim());
        }
        if (StrUtil.isNotBlank(category)) {
            suggestions.add(category.trim());
        }
        return suggestions;
    }
}

SpringTask 定时将mysql数据同步到es

@Component
@RequiredArgsConstructor
public class EsTask {
    private final IItemService itemService;

    private final RestHighLevelClient client;
    @Scheduled(cron = "0 */5 * * * ?") // 每5分钟执行一次
    public void syncProductToEs() {
        itemService.syncData();
    }
}

效果展示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值