自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(250)
  • 资源 (36)
  • 论坛 (3)
  • 问答 (5)

原创 《大型网站技术架构》读书笔记

作者:李智慧简介:https://www.zhihu.com/people/li-zhi-hui-87/activities 概述 第一章:大型网站架构演化 大型软件的特点,需要解决的几个重要问题: 高并发、大流量 高可用 用户分布广泛,网络复杂 安全性 可扩展性、迭代开发 ...

2019-12-05 14:41:21 736

原创 JDK8源码分析之-concurrenthashmap

ConcurrentHashMap主要的核心设计有:* 数据结构方面:相对于1.7,采用了单元素segment,采用了链表+红黑树德存储结构* 并发安全方面:读取时采用CAS乐观锁,读取时采用Synchronized悲观锁。从两个函数看源码:添加函数:putVal/** * @param key * @param value * @param onlyIfA...

2019-04-27 16:04:53 757

原创 分治递归-贪心算法

贪心者,若不犯人,远甚奉献;奉献者,受困于感,舍大为小;分治递归:递归是一种方法调用方式,深度调用,形式类似于栈的进出。分治的思想最简单的形式就是归并排序,同归讲一个问题拆分为多个问题来求解。分治和递归之所以有联系,是因为大多数场景下,分治的算法,都是同归递归调用来求解的。这样的问题往往也可以通过动态规划来求解常见题型:归并排序、求平方根、指数pow计算恢复IP地址:25525511...

2019-04-17 23:10:22 1065

原创 《深入理解Java虚拟机》读书笔记

世间万物皆系于四剑之上尽管这本书是一本讲述Java的书籍,但是这本书的内容却并不只是针对Java而言。而是针对计算机整个底层的规划,如何通过底层的设计来创造出合理便捷的语言。底层开发人员需要了解上层的应用而设计合理的底层结构,上层开发人员需要连接底层的结构来更好的理解程序的内部逻辑。程序的运行流程:编写好的Java文件,首先通过编译器编译为class字节码文件,在这个过程中,虚拟机会对...

2019-04-12 12:47:33 823

原创 一句话总结设计模式-《大化设计模式》读书笔记

设计模式并不是一种算法,而是一种思想,一种软件开发思想;这种思想便于开发的维护、扩展。基于创建型单例模式:通过锁机制或者单一加载机制,确保程序只创建一个对象。工厂模式:将对象的实例化交给第三者-工厂类抽象工厂:在工厂模式的基础上继续加一层,有多个工厂类。通过一个工厂接口,将所有的工厂统一起来基于结构型装饰器:通过继承同一个接口对功能进行增强适配器:对功能不同的接口进行聚...

2019-04-11 17:33:44 772

原创 算法再回顾-动态规划

f(n) = f(n-2) + f(n-1)上面是一道编程题的原型,菲波拉契数列;往往,我们需要求解函数f(n)的结果。一般有以下几种解法:* 递归算法分;即通过递归调用进行计算,但是这种方法计算了过多的重复值,因而效率低下* 记忆搜索算法:算法思路还是采用递归思想。不同的是,为了解决重复计算的问题,引入了一个记忆数组array[n],用来记录之前已经计算的结果,防止重复计算。* 动...

2019-04-09 22:48:41 762

原创 《Java并发编程的艺术》读书笔记

君子谋道不谋食,恍惚半载被忧贫第一章:并发编程的问题多线程是为了解决效率问题,尽可能使用处理器资源,同时保持线程共享资源安全。2. 1. 上下文切换:多个线程之间,频繁的切换,浪费调度资源2. 死锁:由于死循环或者互斥等造成的线程无法继续进行,永久等待的情况3. 资源限制的挑战:读入速度大于写入速度第二章:java并发机制的底层实现和主要工具轻量锁:volatile-单词的意思...

2019-04-07 17:54:42 740

原创 一千公里

山随平野尽,江入大荒流。按理说,过去的两天是如此地劳累,以至于我今天应该提前下班,早早收场,大睡他一番。但是,突然之间,我总觉得需要做点什么,需要写点什么去记录两天的美好时光,需要再去回味一下两天里的情情景景。但是,突然提笔,才发现,心里想的和肚子里的墨水不在一个水平,粗鄙的词句完全无法畅快的表达我此刻的心情,更不用说是优美的文采,华丽的乐章。但是,我还是要写点什么的,就像一个人的成长一样,...

2018-10-29 22:47:28 1006

转载 Linux中查看各文件夹大小命令du -h --max-depth=1

**du [-abcDhHklmsSx] [-L <符号连接>][-X <文件>][–block-size][–exclude=<目录或文件>] [–max-depth=<目录层数>][–help][–version][目录或文件]常用参数:-a或-all 为每个指定文件显示磁盘使用情况,或者为目录中每个文件显示各自磁盘使用情况。-b或-byt...

2018-10-25 19:59:17 847

原创 再学概率论-蒙特卡罗和拉斯维加斯

对于喜欢看片的人来说,拉斯维加斯是再熟悉不过了,这座以赌城闻名的城市几乎出现在很多的赌类电影中,而蒙特卡罗也是一个赌城。这里之所以和算法相关联,主要在于概率论最早的使用领地就是赌场之中,而蒙特卡罗算法和拉斯维加斯算法就是其中两种算法的核心原理。蒙特卡罗为了更加形象的说明两个算法的原理,我们先举一个例子,以防迷失在过多的公式之中。蒙特卡罗:假如你是一个赌徒,你经常去玩转轮盘游戏,轮盘有...

2018-10-24 20:16:47 1168

原创 深度学习20-限制玻尔兹曼机RBM

title: 深度学习20-限制玻尔兹曼机RBMtags: 新建,模板,小书匠grammar_cjkRuby: true玻尔兹曼机来源于玻尔兹曼分布,而玻尔兹曼分布的创立者是路德维希·玻尔兹曼,这个原理来源于他首次将统计学用于研究热力学,即物质的状态概率和它对应的能量有关。比如,我们常用熵来形容物体的混乱程度,同时如果我们的定义足够好,任何物质其实都有它的一个“能量函数”,这个能量函数表...

2018-10-24 20:16:01 1691

原创 分类器的评价指标

分类器的评价指标主要作用是根据应用场景的不同,来评价不同的分类器性能。比如,癌症诊断中,宁可错判一个未患病患者,也不能遗漏一个真实癌症患者;食品检测中却不同,对于不合格的食品,尽可能的一个不漏。而对于一般的图像分类,就需要总和考虑,哪一方面判断错了都是不好的。分类矩阵:分类目标只有两类,计为正例(positive)和负(negtive):True positives(TP): 被正确...

2018-09-28 14:22:56 1282

原创 Seq2Seq模型

seq2seq模型即通过序列预测序列,但是相对于传统单一深度学习系统,如CNN或者RNN,这些模型的输入输出都是固定的长度,比如图像识别中图像的大小。但是对于机器翻译或者语音对话而言,由于输入的序列文本大小可变,预测输出也是可变的,因而这种单一的格式很难适应。因此提出了seq2seq模型,这是一种编解码架构模型(encoder-decoder)大体原理个人解释:对于输入序列,假设序列长...

2018-09-28 14:22:33 1005

原创 tensorflow-seq2seq知识点梳理

title: tensorflow-seq2seq知识点梳理tags: 新建,模板,小书匠grammar_cjkRuby: true接触python已有两年之久,零散地使用tensorflow也将近一年。但是是指今日,如果让我重新建立一个项目,我仍是无能为力。有时候,我会有一种感觉,python这种语言就像是一个无底洞,你永远不知道它在不同的场景中有多少不同的变化,更可怕的是,你无法知晓...

2018-09-27 17:35:15 780

原创 语音合成系统WORLD-原理和简单使用

最近在做语音合成相关的一个东西,其中后期需要做一个声音转换系统,但是真正的声音转换系统还挺复杂,因为我们的目的是希望能够将一个声音完全地变为另一个已知的WORLD通过获取三个语音信号相关的参数信息来合成原始语音,这三个参数信息分别是:基频F0、频谱包络、非周期信号参数(英文分别为:Fundamental Frequency、spectral envelope、aperiodic parame...

2018-09-25 11:25:15 6212 2

原创 语音合成综述

title: 语音合成综述tags: 新建,模板,小书匠grammar_cjkRuby: true语音相关基础知识点:时域信号:一维原始信号傅里叶变换:得到频域特征短时傅里叶变换:傅里叶变换得到了频域信号,但是丢失了时域信号,所欲通过STFT得到时频信号梅尔频谱倒谱系数:单单频率信号表达不足,为了更加和人的耳朵听觉相符,我们使用了mel窗滤波,得到人耳的频率段幅度系数梅尔声谱...

2018-09-25 10:01:04 5177

原创 深度学习优化器Optimizer总结-tensorflow-1原理篇

单纯以算法为论,深度学习从业者的算法能力可能并不需要太大,因为很多时候,只需要构建合理的框架,直接使用框架是不需要太理解其中的算法的。但是我们还是需要知道其中的很多原理,以便增加自身的知识强度,而优化器可能正是深度学习的算法核心本文基本完全参考一下连接:原理简化讲解篇:https://morvanzhou.github.io/tutorials/machine-learning/ML-i...

2018-09-19 20:19:17 2456 1

原创 linux下非root用户安装软件-pyaudio、sounddevice

title: linux下非root用户安装软件-pyaudio、sounddevicetags: 新建,模板,小书匠grammar_cjkRuby: true最近在配置一个深度学习框架,由于服务器是公用的,导致并没有root权限,所有对于许多的软件安装,都无法直接使用apt-get安装,因此需要采取编译安装的方式,暂且先记下来,以后作为参照。主要的负载点并不在于安装步骤,而在于如何处理...

2018-09-19 18:51:39 1729

原创 Linux与脚本编程-1

很多东西不是学了再去用,而是用时才去学,特别是对于linux而言,这句话显得更加实用。对于不是非系统开发人员,linux的应用场景往往只是作为一种服务,因而它只是一个服务工具,并不需要系统的去学习内部的原理。参看《Linux命令行与shell脚本编程大全》第3版 (前5章)第一章 初始linux四大组成部分: * linux内核 作为系统的核心,内核相当于计...

2018-08-27 09:19:31 748

原创 电影感悟-豆瓣TOP3

物质基础决定上层建筑。而是多年的时间里,我慢慢认识到这句话的内在含义,也慢慢开始懂得,一个人的价值不仅仅是由其本身创造,还附带他所有的一起资源,即便是家庭背景、社会阅历、周边朋友,都是其价值的体现,所以,有时候,这个社会很多不公平其实是公平的,因为每个人都会不同,别人有的你没有,你有的别人也会没有,完全靠之后的努力,是否可以弥补。就像别人有背景,你没有,你有才华智力,别人可能第一点。如果找女...

2018-08-20 19:48:50 855

原创 机器学习-激活函数总结

激活函数就相当于人体的神经元,它的主要作用就是对输入的信号进行转换,比如将疼痛转化为疼痛信号。但是疼痛的来源有很多种,也就是可能来自于很多的上一个层的神经细胞,比如敲打、拉扯、针刺等等,但是归根结底,它就是一个痛。但是为什么会存在这么多的激活函数?原因在于,当前的计算机并不能很好地模拟人体的神经元,比如,敲打可以加重疼痛,但是药物也可以缓解疼痛,但是对于Sigmoid函数,它的输出并不是以0...

2018-08-20 17:49:18 1979

原创 mysql必知必会-基础再复习笔记1

在大部分场景下,基本的curd操作就已经满足要求。而且对于不是专门从事数据库开发的人而言,数据库其实应该遵从“用时即查”的方式。并不需要太过于系统的学习。但是,接触的实际操作太少,使得我门并不能很好地练习数据库。另外,数据库并不是单单的数据库,这其中的技术不仅仅设计复杂的数据结构的应用,还涉及到各种工程化的技术,多线程优化,等等。基本上,数据库的很多构建逻辑,已经包含了很多实际用到的其他技术...

2018-08-07 17:18:36 3213

原创 mysql数据库进阶-leetcode-10道2

其他题目需要money解锁-.-196. Delete Duplicate Emails解析:删除重复值邮箱 答案:DELETE P1 FROM Person p1,Person P2 WHERE P1.Email = P2.Email AND P1.Id > P2.Id197. Rising Temperature解析:查找温度相对于前一天上升的数据;需要...

2018-08-06 11:07:16 1417

原创 mysql数据库进阶-leetcode-10道

数据库练习链接:https://leetcode.com/problemset/database/175. Combine Two Tables解析:问题为联合查询两个表Person和Address的数据,无论address中是否有person对应的数据。即输出所有的person数据,address中没有的数据显示为空 考察:内连接、外连接(左连接、右连接) 内连接:join on...

2018-08-04 21:04:31 903

原创 学期总结-2018年上

从现在开始,我需要养成一个写作的好习惯,之所以培养这个习惯,是因为:我开始发现我的一个重大缺陷——语言表达能力的欠缺。这种能力,在一般生活中并不会有太大的作用,而且很多时候,大部分人都体会不到其所带来的“破坏”,这种破坏,会让你的交际陷入阻塞,职场陷入瓶颈,生活面临窘境。我不太会写总结,每次写给导师的月报也都是在最后的几天草草完事。而且有时候,总结总得去找些有趣的、或者有意义的事,来丰...

2018-07-22 11:15:13 839

原创 Redis实战:第五章-使用Redis构建支持程序

本章主要讲解redis的使用案例,相对于以往的技术,redis在这些领域将大大简化或者提高程序的便利和稳定。比如日志记录,相对于以往的文件记录方式将更加灵活,便于数据操作, 日志记录 以往的日志记录采用本地文件存储的方式,这种方式有一种弊端,由于是文本存储,各个服务器之间很难协调,很难对多个数据文件进行聚合,导致之后的数据分析,将显得很不方便,相对而言,由于redis数据库...

2018-07-12 17:36:41 966

原创 Redis实战:第四章-数据安全与性能保障

redis不提供严格的锁机制,即不保证数据的完全正确性,所以需要用户自己去严格检查。为了保证数据的安全,需要将数据及时的存储到硬盘上,redis提供两种持久化的方式:快照-批量写入;追加-单条追加。另外为了保证数据库的安全,防止数据丢失和为了负载均衡,redis也提供了分布式情况下的复制策略,可以对多个服务器数据进行同步。另外,根据不同的场景,我们需要合理的判断形势,在性能和安全上达到一个平...

2018-07-05 21:27:46 1294

原创 Redis实战:第三章-redis命令练习

redis有5种数据结构,分别为字符串、列表、集合、散列、有序集合;相当于java中的String、list、set、hashmap、sortset(z);另外redis不仅仅只有有序集合提供排序,对于另外四种结构,redis还提供了sort命令,可以更具指定的格式进行排序;redis也支持事务处理、发布和订阅功能,并且可以设置过期时间。import redis.clients.j...

2018-06-30 18:55:58 1737

原创 Redis实战:第二章-使用redis构建web应用

对于一个高并发电商网站,如果使用传统的关系型数据库,由于关系型数据库在并发量达到100万时,效率将大大降低,比如对于一个电商网站,用户登录浏览商品,在很短的时间内,用户可能会浏览很多商品,而这些商品就是用户的兴趣点,为了分析用户的潜在需求,我们需要记录所有的访问数据,难点在于,如果有100万个用户都在这样操作,传统的关系型数据库将很难处理这么多的请求,将造成大量的数据丢失,所以,为了快速响应...

2018-06-30 18:55:28 835 1

原创 Redis实战:第一章-初识Redis案例-文章投票

redis全称REmote DIctionary Server,即远程字典服务,是一个由Salvatore Sanfilippo写的key-value存储系统。Redis是一个开源的使用ANSI C语言编写、遵守BSD协议、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。它通常被称为数据结构服务器,因为值(value)可以是 字符串(String),...

2018-06-30 18:54:52 995

转载 Zookeeper-Zookeeper leader选举

转载自:https://blog.csdn.net/zhanghongjie0302/article/details/77145978原计划在介绍完ZK Client之后就着手ZK Server的介绍,但是发现ZK Server所包含的内容实在太多,并不是简简单单一篇Blog就能搞定的。于是决定从基础搞起比较好。那么ZK Server最基础的东西是什么呢?我想应该是Paxos了。所以本文会...

2018-05-22 09:48:40 779

原创 hadoop集群简化安装-CDH的安装和使用

hadoop大数据开发环境,由于牵扯到太多的部件,而且这些部件之间联系复杂,独立的安装往往错误百出,即浪费时间又浪费精力,还不讨好,而且这些往往还不是真正开发做的事(可能)。另外对于大数据而言,机器往往动不动就上万台,像这样一台一台的安装,只能把猴子给累死。所以,为了便于继承搭建,hadoop出了一个实用版的CDH用来管理所有的部件,相当于集成。这样就可以慧姐在控制台搭建管理集群,大大解放生...

2018-05-17 22:46:42 1437

原创 hadoop-hbase几个错误记录

集群这东西,就是各种文件配置,太过于杂乱导致,如果你不是特别细心,总是会错误百出,以致于精神萎靡而无法向前。但是,有时候,即便你细心得像个暖男,最后还是会出现问题,很多时候,这并不是你的错,而是机器的错,但是,如果你不能够在短时间内找到“问题”的真正原因,背锅的还是你自己几个浪费时间的问题 * 1还是防火墙问题:把防火墙全部给永久封停# 关闭iptables/etc/ini...

2018-05-12 16:45:32 836

原创 Hadoop-HBase集群搭建

随着数据的增大,传统的关系型数据库对于上千万或者上亿的数据处理,效率会迅速下降。同样是为了解决大数据处理问题,hbase也是基于分布式,这种依靠列存储的方式,使得数据处于非结构化或者半结构化,便于数据的大量操作。hadoop生态架构 数据提取工具:flume:收集日志,从日志中提取数据sqoop:从结构化存储器中提取数据数据处理工具:mahout:数据挖掘/机器学习开...

2018-05-11 18:45:02 812

原创 hadoop-mapreduce基于物品的协同推荐算法ItemCF

推荐算法作为一种大数据分析最早的应用,如今已经得到的大量的普及,特别是新进崛起的头条,抖音,更或是早前的网易云音乐,其中的最吸引支出无不是人性化的推荐系统,实际上也正是这些使得BAT三巨头始终无法将其击倒。尽管如今的推荐系统算法已经变得“面目全非”,但是其中的主要精髓还是基于协同过滤算法,只是在其中进行了适当的优化或者改进,以适应不同的场景和数据。更加详尽的推荐算法请参照项亮的《推荐系统实践...

2018-05-09 12:06:20 1582

翻译 基于深度循环神经网络的单通道人声与音乐的分离-论文翻译

SINGING-VOICE SEPARATION FROM MONAURAL RECORDINGS USING DEEP RECURRENT NEURAL NETWORKS 主体内容:作为当前的一大热门,语音识别在得到快速应用的同时,也要更适应不同场景的需求,特别是对于智能手机而言,由于元器件的微型化导致对于语音处理方面的器件不可能很大,因此单通道上的语音分离技术就显得极为重要,而语音分离...

2018-05-08 11:14:38 3883 4

原创 hadoop-hive初始化

围绕大数据、数据挖掘、人工智能有很多名词,这些名词都互相关联,不太懂的人可能只是把他们当做高级码农的一个分支,但是,其中的真正技术却并不是一半码农能够做的,或者这些领域可能就不是码农干的事,即便做这些的人可能是个java或者python开发者,但是编程只是他们的副业而已,他们的主业却是数据科学。但是,有一个问题,既然是副业,也就是说这些数据科学家并不是太会编程,然而,不会编程,数据处理时很艰...

2018-05-06 23:16:26 1884

原创 推荐系统-计算用户关联度fof(hadoop计算)

场景:无论是qq,还是微博、头条等带有社交属性的平台,为了黏住用户,往往会给用户推荐好友,这种好友一般都是更具自己的兴趣或者自己好友的好友得来,比如qq中“可能认识的人”。fof关系:对于任何一个用户A,用户A的好友集合为B,B中的任何两个用户之间的关系如果不是好友关系,则就为fof关系推荐系数需要排序,排序的依据就是整个用户组的fof关系的多少,同样的fof关系越多,表明两个用户...

2018-05-04 11:43:04 1057

原创 微信公众号平台搭建连接javaweb

先决条件:一个本地可运行的javaweb:我的是一个网上git的springboot项目 注册一个微信公众号申请链接配置前的准备-内网穿透 由于项目搭建在本地电脑上,外网无法访问,所以需要使用工具将本地地址映射到公网。免费工具使用:natapp natapp下载网址 natapp配置教程 注意:这里只能使用80端口,因为微信公众号只开放80端口使用免...

2018-05-03 12:12:25 2686

原创 hadoop计算框架shuffle-计算每个月最高三个温度出现的时间

MapReduce主要由两部分组成,map和reduce,但是这两部分如何连接?比如对于单词计数,原始数据为java hadoop java,map的作用是对单条数据进行处理,划分格式便于处理计算,处理后为java 1 hadoop 1 java 1,而reduce是对map的类型进行统一计算,输出为java 2 hadoop 1。如果只是这样简单地逻辑,shuffle就不用了,shuffl...

2018-05-03 10:37:23 1010

An_Introduction_to_Voice_Computing_in_Python

An Introduction_to_Voice_Computing_in_Python 这是与语音计算书简介相关的所有脚本的分类。这些脚本应该让您快速学习如何为语音相关的应用程序编写Python代码。

2019-01-24

《随机过程:计算与应用》冯海林, 薄立军

《随机过程:计算与应用》冯海林, 薄立军 《西安电子科技大学出版社》

2018-09-07

风控算法大赛解决方案

拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 拍贷“魔镜风控系统”从平均 400 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 个数据维度评估用户当前的信状态,给每借款 人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个人打出当前状态的 信用分,在此基础上再结合新发标息对于每个6个月内逾 个月内逾 期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来期率的预测 ,为投资人提供关键决策依据。本次竞赛目标是根用户历史行数来用户在未来 用户在未来 用户在未来 6个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 个月内是否会逾期还款的概率。 问题转换成 问题转换成 问题转换成 2分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 分类问题,评估指标为 AUC ,从 Master Master Master,LogInfoLogInfo LogInfo ,UpdateInfo UpdateInfo UpdateInfo 表中构建 表中构建 特征,考虑评估指标为 特征,考虑评估指标为 特征,考虑评估指标为 特征,考虑评估指标为 特征,考虑评估指标为 AUC AUC,其本质是排序优化问题,所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 ,其本质是排序优化问题所以我们在模型顶层融合也使用基于 排序优化的 排序优化的 排序优化的 RANK_AVG RANK_AVG RANK_AVG融合方法。 融合方法。 融

2017-10-31

Adaboost 算法的原理与推导

AdaBoost,是英文"AdaptiveBoosting"(自适应增强)的缩写,由YoavFreund和RobertSchapire在1995年提出。它的自适应在于:前一个基本分 类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小 的错误率或达到预先指定的最大迭代次数。

2017-10-31

技术之瞳+阿里巴巴技术笔试心得

《技术之瞳——阿里巴巴技术笔试心得》由阿里巴巴集团校园招聘笔试项目组所著,收集了阿里历年校招中的精华笔试题,涉 及多个领域。《技术之瞳——阿里巴巴技术笔试心得》中内容大量结合了阿里巴巴的实际工作场景,以例题、解析、习题的形式,引 导读者深入理解技术上的关键点、紧要处,夯实基础,启发思考。《技术之瞳——阿里巴巴技术笔试心得》内容不仅专业、有趣,更 是将理论知识与实践应用结合起来,以场景化的问答娓娓道来!

2017-09-22

sqljdbc4.jar

sqljdbc4.jar 类库提供对 JDBC 4.0 的支持。它不仅包括 sqljdbc.jar 的所有功能,还包括新增的 JDBC 4.0 方法。 sqljdbc4.jar 类库要求使用 6.0 或更高版本的 Java 运行时环境 (JRE)。在 JRE 1.4 或 5.0 上使用 sqljdbc4.jar 会引发异常。

2017-07-14

MbrFix.exe

Win7、Ubuntu双系统正确卸载Ubuntu系统

2017-07-14

opencv_python-3.2.0+contrib-cp35-cp35m-win_amd64.whl

opencv_python-3.2.0+contrib-cp35-cp35m-win_amd64.whl

2017-06-15

OpenCV-Python-Toturial-中文版.pdf

OpenCV-Python-Toturial-中文版.pdf

2017-06-15

numpy-1.11.3+mkl-cp27-cp27m-win32.whl

numpy-1.11.3+mkl-cp27-cp27m-win32.whl

2017-06-14

OpenCV入门教程.pdf

OpenCV入门教程.pdf

2017-06-14

Sublime Text Build 3126 x64 Setup.exe

Sublime Text Build 3126 x64 Setup.exe

2017-06-14

wxPython3.0-win64-3.0.2.0-py27.exe

wxPython3.0-win64-3.0.2.0-py27.exe

2017-06-14

numpy-1.11.3+mkl-cp27-cp27m-win_amd64.whl

numpy-1.11.3+mkl-cp27-cp27m-win_amd64.whl

2017-06-14

基于卷积神经网络的图像分类

基于卷积神经网络的图像分类

2017-04-14

Caffe中文文档

Caffe中文文档

2017-04-14

图像分割源码(基础)

matlab图像分割源码

2016-12-04

数字图像处理的MATLAB实现

数字图像处理的MATLAB实现

2016-11-11

机器学习导论.pdf

机器学习导论.pdf

2016-11-11

机器学习实战(中文版)

机器学习实战(中文版).pdf

2016-11-11

pip-1.5.4.tar.gz

pip-1.5.4.tar.gz

2016-10-23

ext 4.0.zip

ext 4.0.zip

2016-10-23

MyBatis3.2.3 API.chm

MyBatis3.2.3 API.chm

2016-10-23

Ext JS 3.1-3.3 API中文文档.CHM

Ext JS 3.1-3.3 API中文文档.CHM

2016-10-23

机器学习实战

机器学习实战.rar

2016-09-30

算法谜题.pdf

算法谜题.pdf

2016-09-30

编写高质量代码 改善Python程序的91个建议

编写高质量代码 改善Python程序的91个建议.pdf

2016-09-30

统计自然语言处理

内容简介, 本书全面介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。, 本书可作为高等院校计算机、信息技术等相关专业的高年级本科生或研究生的教材或参考书,也可供从事自然语言处理、数据挖掘和人工智能等研究的相关人员参考。, -------, 目录, 第1章 绪论, 1.1 基本概念, 1.1.1 语言学与语音学, 1.1.2 自然语言处理, 1.1.3 关于“理解”的标准, 1.2 自然语言处理研究的内容和面临的困难, 1.2.1 自然语言处理研究的内容, 1.2.2 自然语言处理涉及的几个层次, 1.2.3 自然语言处理面临的困难, 1.3 自然语言处理的基本方法及其发展, 1.3.1 自然语言处理的基本方法, 1.3.2 自然语言处理的发展, 1.4 自然语言处理的研究现状, 第2章 预备知识, 2.1 概率论基本概念, 2.1.1 概率, 2.1.2 最大似然估计, 2.1.3 条件概率, 2.1.4 贝叶斯法则, 2.1.5 随机变量, 2.1.6 二项式分布, 2.1.7 联合概率分布和条件概率分布, 2.1.8 贝叶斯决策理论, 2.1.9 期望和方差, 2.2 信息论基本概念, 2.2.1 熵, 2.2.2 联合熵和条件熵192.2.3 互信息, 2.2.4 相对熵, 2.2.5 交叉熵, 2.2.6 困惑度, 2.2.7 噪声信道模型, 2.3 支持向量机, 2.3.1 线性分类, 2.3.2 线性不可分, 2.3.3 构造核函数, 第3章 形式语言与自动机, 第4章 语料库与词汇知识库, 第5章 语言模型, 第6章 隐马尔可夫模型, 第7章 汉语自动分词与词性标注, 第8章 句法分析, 第9章 语义消歧, 第10章 统计机器翻译, 第11章 语音翻译, 第12章 文本分类, 第13章 信息检索与问答系统, 第14章 自动文摘与信息抽取, 第15章 口语信息处理与人机对话系统, 附录 项目作业, 名词术语索引, 参考文献

2016-09-30

程序员接单宝典(第三版)

程序员接单宝典(第三版).pdf

2016-09-30

JAVASCRIPT实例自学手册

《JavaScript实例自学手册:通过486个例子掌握Web开发捷径》涵盖了目前网络开发涉及的所有方向,从页面、文本、窗口、鼠标、日期时间等基本应用,到图像、滚动条、进度条、网络验证、文件处理等深入应用,包括目前最流行的异步传输、Property框架、Ajax和DOM等高级技术。全书共分23章,包括486个常用JavaScript实例。每个实例都提供了代码分析及效果演示,可以帮助读者轻松掌握JavaScript的开发技巧,并从中找到网站开发的乐趣。《JavaScript实例自学手册:通过486个例子掌握Web开发捷径》提供了Web2.0时代所必须掌握的一些技巧实例,是一本学习网络开发技术的随身手册。

2016-09-30

intel英特尔多核_多线程技术中文版

intel英特尔多核_多线程技术中文版.pdf

2016-09-30

Java程序员面试宝典(杨磊) PDF 扫描版

Java程序员面试宝典(杨磊) PDF 扫描版

2016-08-29

反入侵的艺术——黑客入侵背后的真实故事

反入侵的艺术——黑客入侵背后的真实故事

2016-08-29

浪潮之巅.pdf

浪潮之巅

2016-08-29

淘宝技术这十年

淘宝技术这十年

2016-08-29

Activiti实战

由于电子书是高清版,大小100M,超过最大上传60M限制,所以提供的是百度云链接。

2016-05-24

jsp如何与Java进行数据传递

发表于 2017-04-06 最后回复 2020-02-20

<tr> jsp中如何将后台传来的数据添加到table上

发表于 2017-04-11 最后回复 2017-04-12

ExtJS中如何获取已选中的数据信息

发表于 2016-04-18 最后回复 2017-04-06

提示
确定要删除当前文章?
取消 删除