softmax模型可以用来给不同的对象分配概率。即使在训练更加精细的模型时,最后一步也需要用softmax来分配概率。
softmax回归(softmax regression):
为了得到一张给定图片属于某个特定类的证据(evidence),我们对图片像素值进行加权求和。如果这个像素具有很强的证据说明这张图片不属于该类,那么相应的权值为负数,相反如果这个像素拥有有利的证据支持这张图片属于这个类,那么权值是正数。
我们也需要加入一个额外的偏置量(bias),因为输入往往会带有一些无关的干扰量。然后用softmax函数可以把这些证据转换成概率 。
softmax可以看成是一个激励(activation)函数或者链接(link)函数,把我们定义的线性函数的输出转换成我们想要的格式,也就是关于类的概率分布。