小米pro电脑风扇卡顿问题解决方案

小米pro电脑风扇卡顿解决方案终极版

本人一直使用小米pro15.6系列电脑,但是从过去年开始电脑风扇出现卡顿的现象——即间断性骤停,类似于车轮瞬间锁死的情况。不过令人疑惑的是在骤停之后极短时间内又能再次高速重启。根据现有能力我无法解决,遂在网上论坛寻求解决方案,网上的解决方案基本倾向于两种情况,对此我针对自己的电脑进行了实验验证,现在将最终的处理以及解决的方法公布如下(如果不想探明原因的转最后一段看解决方案):

风扇本身质量问题

很多人思考风扇故障的原因总是会归结到风扇本身存在的问题,例如:轴磨损,安装叶片摩擦机器其余零件。但是仔细一想,不一定是这样:

风扇并没有摩擦声

我想出现这种情况的网友都知道当这种情况发生的时候是没有预兆的,但是就如同汽车轮胎摩擦后骤停,一定是会有一个摩擦接触的过程,而这个过程中体现在风扇运转中就是会出现摩擦的声音。根据我们的现象,风扇骤停的原因几乎不可能来自于摩擦。

风扇某一些时间段能正常运转

当机器处于低CPU占用率时,电脑风扇工作速度下降,可能会维持一段时间不发生故障,这说明风扇轴磨损即使存在,也不会出现运行骤停的情况。但根据众多网友的反应以及我的实际经历,我姑且认为风扇轴磨损存在,这点后面也会讲到。

电脑芯片驱动问题

这一点是解决风扇问题的关键。下面讲讲我的经历:
从去年3月份偶然发生了风扇卡顿现象,查询网站发现需要更换风扇,当时只是觉得电脑用了一年多,也许风扇质量确实不过关,所以我并没有对问题进行深入探讨,凭直觉认为是风扇自身的问题。所以我于八月份去修理店更换了风扇。本来十分好奇风扇哪里出现了故障,想拆开来研究一下,毕竟我也算半个学这类专业学生,但是旧风扇竟然被店主拿去以旧换新了,真是***了!
However,更换风扇确实起到了立竿见影的效果。
我的风扇没有发生过卡顿,他又回到了最初的状态,在接下来的三个月里。
12月份我的风扇又发生了卡顿,这真的令我非常恼火。一是我觉得钱白花了,二是我觉得这似乎是个无解的问题。
这一次我详细的揣摩,对比了一些电脑,我发现了一件很怪异的事:
小米的风扇似乎工作起来发出的声音更大,即使是正常运行的时候也是一样的。这不由得令我觉得可能是电脑对于风扇的控制策略出现了问题。
转折点出现了。
饱受风扇噪声、振动摧残的我想以毒攻毒。于是我打算把大型游戏开着试试风扇的运行情况。
打开了LOL(虽然要求的电脑内存、显卡都不大,CPU调不到全满),我惊奇的发现,整局游戏,风扇一次都没有卡顿过,接着,第二把、第三把,亦是如此。这让我更加确信,CPU调动风扇运转的机制出现了问题。但是从哪里下手?按理说,CPU的驱动都是封装好的,风扇的控制策略写进了CPU里,怎么才能…
更换驱动!
我以我的电脑Pro 15.6 为例,下载地址http://www.mi.com/service/bijiben/drivers/15
把小米官网的驱动全部重新安装一遍:
固件外设驱动

系统驱动
经过反复重启安装驱动,当然一些不必要的驱动不用更新,最后发现,风扇卡顿的情况出现了极大程度的好转,偶尔会有一两次,但是电脑几乎回到了那个最初的状态。
但要注意一点:当你把电脑抬起来时,风扇必然会卡顿。所以这给了我们有一个启示:风扇轴承确实发生了一定程度的磨损。但幸好,我已经为你提供了一个解决的方法了。

解决之道

1)风扇未发生卡顿的用户
去小米官网下载所有软硬件驱动;
尽量不要休眠状态放进包里移动(会损毁风扇轴承);
2)风扇已经发生卡顿的用户
重复(1);
尽量再更换一次风扇,因为风扇确实已经磨损了很多。

总结

不要盲目更换风扇,小米的风扇设计也的确存在问题,但是最主要的原因还是大家没有去官网下载驱动,只是用安全软件下载了驱动。

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值