定义:每一趟都是相邻两个元素进行比较,将小数放在前面,大数放在后面,最终一趟走完,最大的数也就跑到最后面了。
冒泡排序是常见的一种排序方法,比较简单,容易理解,多用于教学(>﹏<)
最坏情况下时间复杂度:O(N^2) 。
比较次数是n(n-1)/2。
注意两者是不同的概念,为了便于理解,我再啰嗦几句。
对于最坏的情况下,是将顺序的数据变成逆序,或者将逆序的数据变成顺序,这样的情况每次的比较都要进行交换。举例来说,比如一组数据5,4,3,2,1
进行升序的排列。
第一次大循环结果:4,3,2,1,5
中间经历了4次比较。
……
第四次大循环结束:1,2,3,4,5
经历了1次比较。
所以总的比较次数为:4+3+2+1=10。
而对于n的数列来说:(n-1)+(n-2)+(n-3)+….+1 = n*(n-1)/2,得到最大的比较次数。
按照复杂度的计算规则,去掉常数,去掉最高项系数,其时间复杂度也就为O(N^2) 。(可能有些不知道复杂度是如何计算的,为何要去掉常数和系数。假设n=10000,那么10000*(10000-1)/2,现对于10^8来说10000就显得微乎其微了,对于系数我们也不要用关心,因为n^2,在这里也就是10^8才是决定整个表达式的关键因素。)
代码实例:
public static void main(String[] args) {
int[] arr = { 5, 4, 3, 6, 8, 9 };
bubbleSort1(arr);
System.out.println(Arrays.toString(arr));
}
static void bubbleSort1(int[] arr) {
int temp = 0;
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
优化
思路:当我们发现第一次外循环结束后,数据已经变得有序了后,就没有必要再进行循环了,因为此时只有比较没有交换了。那么第二遍循环没有交换,势必不会进入if语句。如果不好理解,我们可以假设一组数列。
2,1,3,4,5
第一遍循环后数列变成1,2,3,4,5
.
这时接下去的循环就没有必要了,这样的话,我们可以用一个标识符,来记录是否发生了交换,你可以用boolean,也可以用整形数值,这里只作为一个标志位。
代码:
public static void main(String[] args) {
int[] arr = { 5, 4, 3, 6, 8, 9 };
bubbleSort2(arr);
System.out.println(Arrays.toString(arr));
}
static void bubbleSort2(int[] arr) {
int temp = 0;
boolean flag ;
for (int i = 0; i < arr.length - 1; i++) {
flag = true; //若不进入内层循环的if,flag为true,证明此时数列已经有序。
for (int j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
flag = false;
}
}
if(flag)
break;
}
}
总结:
按照改进的算法,对于一个已经有序的数列,算法完成第一次外层循环后就会返回,实际上只发生了n-1次比较,所以,最优的情况下,该算法的时间复杂度为O(N)