- 博客(10)
- 收藏
- 关注
原创 机器学习:pytorch框架(10)--实例阶段性总结:神经网络算法理解(深度学习)
经过前面的实例学习,其实我们可以发现:相较于传统的机器学习,神经网络的模型训练过程是一种端到端的过程,简化中间过程,核心是损失函数更新参数,这就把传统任务简化了。人工智能、机器学习、神经网络、深度学习之间的关系20 世纪 50 ~ 60 年代,逻辑为主,智力游戏;20 世纪 80 年代,知识为主,机器人、机器翻译;2010 年至今,数据为主,模式识别、语音识别。在人工智能领域,神经网络(Neural Network,NN)是近年来的热门话题。深度学习是人工智能领域一种具有代表性的实现方法。
2024-12-02 22:31:17
931
原创 机器学习:pytorch框架(9)--实例:神经网络实现回归任务(毕业薪酬预测)
在面向应届毕业生的众多微信公众号中,经常可以看到诸如“毕业薪酬预测”和“职业生涯规划”之类的趣味性互动内容。这些预测工具实际上运用了简单的回归分析方法。通常,用户会被要求输入关于个人教育背景(如毕业院校、专业)、技能掌握情况等信息,或是通过选择题的形式来提交相关信息。完成信息提交后,系统会基于所提供的数据给出一个预估的起薪范围。该回归模型是通过对大量样本数据进行深入分析建立起来的,包括但不限于毕业生所在学校、地区以及已知的薪资分布状况等因素。
2024-11-29 16:49:22
1008
原创 机器学习:pytorch框架(8)--实例:神经网络实现分类任务(基于MNIST数据集手写数字识别)
在寻找示例之后,开始理解代码和运行实现之前,别忘了实现模型的一般的5个步骤:本次,使用深度学习最常用的数据集:Mnist数据集.MNIST是一个手写数字图像数据集,包含了大量的手写数字图片及其对应的标签,被广泛应用于图像分类和机器学习领域。 MNIST数据集由美国中学生手写数字组成,训练集包含6万张图片,测试集包含1万张图片,数字已经进行过预处理和格式化,图片尺寸固定为28×28。
2024-11-28 13:37:46
1928
原创 机器学习:pytorch框架(7)--学习阶段性反思,自定义数据加载:dataloader与dataset
为了更快速的进入熟练的开发运用阶段,我们现在需要认识到一个问题:pytorch其实是一个工具,或者说仅仅只是一个工具,我们在学习过程中,应该关注我们的核心注意力放在了什么地方!例如,我们一开始学习时,不应该一上来就太过关注于pytorch框架的文档细节,将所有的知识点基础全盘过一遍,这其实是非常耗时的一个策略,学习的效率很低,效果也不好。合理的策略应该是:边做边学!在做和代码实现的过程中,遇到问题,解决问题,记录方案,这样一种面向问题的思路,才会更快速的熟练。
2024-11-27 16:02:30
692
原创 机器学习:pytorch框架(6)--深度学习模型训练过程中的torch.autograd方法,实现二元逻辑回归
从本质上来来说,深度学习模型的训练过程就是不断更新权重值,而权重值的更新需要求解梯度。因此,梯度在模型训练过程中至关重要。同时,求解梯度是相对复杂的。在实际训练过程中,pytorch框架就提供了自动求导(微分)系统。从而不需要手动计算梯度,只需要搭建好向前传播的计算图,然后根据pytorch中的autograd中相应的方法就可以得到所有张量的梯度。
2024-11-26 21:20:56
1069
原创 机器学习:pytorch框架(5)--计算图的理解与代码实操
在之前的学习记录中,学习了张量的一系列操作,而深度学习就是对张量进行了一系列操作。随着操作种类和数量的增多,其实会导致各种各样想不到的问题,比如我们多个操作之间,该并行还是顺序执行,如何协同不同底层设备。以及如何避免各种冗余的操作等等,以上的问题都会影响我们的运算效率,甚至会引入Bug。而计算图的概念就是为了解决上述问题的而设计的。
2024-11-25 23:18:29
967
原创 机器学习:pytorch框架(4)--张量操作和创建,实现一元线性回归
在(3)中,通过学习一个实例对pytorch框架有了一个初步认识,但如果想要对pytorch框架实现随心所欲的调整和运用,那就需要对一些基本内容有更加深入的理解和实操。所以基于框架核心的张量概念,做进一步的学习。
2024-11-24 21:09:13
1916
原创 机器学习:pytorch框架(3)--尝试在一个神经网络实例中理解和实操(鸾尾花数据集)
在对pytorch框架的一些核心概念有一定理解之后,在更深入探索整个框架之前,寻找一个pytorch构建的实例,看看真实开发过程中如何编写代码,对我们构建实践上的认知是有帮助,毕竟编程是一项实践工作,只是停留在理论层面而没有实操,那都是纸上谈兵。实践是检验真理的唯一标准。通过将学习的理论和方法应用到实际问题中,加深对理论和方法的理解,巩固学习到的知识。
2024-11-23 23:05:58
1726
原创 机器学习:pytorch框架(2)--核心概念理解
首先需要了解的是:PyTorch的基本概念(如Tensor和Variable)、自动微分等PyTorch的核心模块。
2024-11-22 15:22:52
1023
原创 机器学习:pytorch框架(1)安装
它将常见的Python包打包发布,解决了独立安装时所遇到的版本冲突问题,同时可以进行创建和管理多个独立的Python虚拟环境。PyTorch是基于动态图构建的,可以使用Python一般的语法,如If/Else/While/For等,天然的Python友好且便于调试,熟悉Python的人们可以快速上手。在选项卡中选好配置后,选项卡下面的“Run this Command”栏中就会生成相应的安装命令,将其复制到CMD命令行中运行即可完成PyTorch的安装。然后去英伟达官网查看对应的支持版本。
2024-11-21 22:04:35
805
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人