参数估计之矩估计

1. 点估计定义

  • 点估计定义

    x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 是来自总体的一个样本,用于估计位置参数 θ \theta θ的统计量 θ ^ = θ ^ ( x 1 , x 2 , ⋯   , x n ) \hat{\theta}=\hat{\theta}(x_1,x_2,\cdots,x_n) θ^=θ^(x1,x2,,xn)称为 θ \theta θ的估计量,或称为 θ \theta θ点估计,简称估计

  • 构造估计量的方式有很多,常用的有矩估计法最大似然估计法

2. 矩估计法

  • 矩估计法简单点的说,就是用样本的矩,替换(估计)总体的矩。

    记总体 k k k阶原点矩为 μ k = E ( X k ) \mu_k=E(X^k) μk=E(Xk)

    样本 k k k阶原点矩为 A k = 1 n ∑ i = 1 n ( X i k ) A_k=\frac{1}{n}\sum\limits_{i=1}^n (X_i^k) Ak=n1i=1n(Xik)

    记总体 k k k阶中心矩为 v k = E [ ( X − E ( X ) ) k ] v_k=E[(X-E(X))^k] vk=E[(XE(X))k]

    样本 k k k阶中心矩为 B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k B_k=\frac{1}{n}\sum\limits_{i=1}^n (X_i-\overline{X})^k Bk=n1i=1n(XiX)k

3. 通过例题理解矩估计法

  • 例1,设总体 X X X的均值 μ \mu μ和方差 σ 2 \sigma^2 σ2都存在,且有 σ 2 > 0 \sigma^2>0 σ2>0,但 μ , σ 2 \mu,\sigma^2 μ,σ2均为未知,又设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 为来自 X X X的样本,试求 μ , σ 2 \mu,\sigma^2 μ,σ2的矩估计量。

    解:

    样本的一阶矩 为 X ‾ \overline{X} X ,总体的一阶矩为 E ( X ) = μ E(X)=\mu E(X)=μ

    因此有 μ ^ = X ‾ \hat{\mu} = \overline{X} μ^=X

    样本的二阶矩为 A 2 = 1 n ∑ i = 1 n X i 2 A_2=\frac{1}{n}\sum\limits_{i=1}^n X_i^2 A2=n1i=1nXi2 ,总体的一阶矩为 E ( X 2 ) E(X^2) E(X2)

    则有 E ( X 2 ) = 1 n ∑ i = 1 n X i 2 E(X^2)=\frac{1}{n}\sum\limits_{i=1}^n X_i^2 E(X2)=n1i=1nXi2

    由于 D ( X ) = E ( X 2 ) − ( E X ) 2 D(X)=E(X^2)-(EX)^2 D(X)=E(X2)(EX)2

    因此有

    σ 2 ^ = 1 n ∑ i = 1 n X i 2 − X ‾ 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \begin{aligned}\hat{\sigma^2} &= \frac{1}{n}\sum\limits_{i=1}^n X_i^2 - \overline{X}^2 \\&= \frac{1}{n}\sum\limits_{i=1}^n(X_i-\overline{X})^2 \end{aligned} σ2^=n1i=1nXi2X2=n1i=1n(XiX)2

  • 例2,设离散型随机变量 X X X ,其分布律如下

    X 1 2 3 P θ 2 2 θ ( 1 − θ ) ( 1 − θ ) 2 \begin{array}{c|lc} X & 1 & 2 &3 \\ \hline P & \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{array} XP1θ222θ(1θ)3(1θ)2

    X X X中取得样本 1 , 2 , 1 {1,2,1} 1,2,1 ,求 θ \theta θ的矩估计量

    解:样本一阶矩 A 1 = 1 3 ( 1 + 2 + 1 ) = 3 4 A_1 = \frac{1}{3}(1+2+1) = \frac{3}{4} A1=31(1+2+1)=43

    总体一阶矩 μ 1 = 1 ∗ θ 2 + 2 ∗ 2 θ ( 1 − θ ) + 3 ( 1 − θ ) 3 \mu_1 = 1*\theta^2+2*2\theta(1-\theta)+3(1-\theta)^3 μ1=1θ2+22θ(1θ)+3(1θ)3

    μ 1 = A 1 \mu_1 =A_1 μ1=A1 ,很容易解出 θ ^ = 5 6 \hat {\theta}= \frac{5}{6} θ^=65

4. 矩估计优缺点

  • 优点
    1. 矩估计法原理简单、使用方便,使用时可以不知总体的分布,而且具有一定的优良性质
    2. 样本数量足够大时,矩估计的优势也就越明显
  • 缺点
    1. 当总体类型已知时,没有充分利用分布提供的信息,因此矩估计不一定是理想估计
    2. 样本数较少时,矩估计的结果将非常糟糕
    3. 一般场合下,矩估计不具有唯一性(关于这一点,后面我们会介绍估计值的优良性准则)
    4. 矩估计应用的前提是总体的矩存在
  • 5
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

积跬步以至千里。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值