前言
1.股票数据:
- Alpha Vantage(https://www.alphavantage.co/)
Alpha_vantage 库:
pip install alpha_vantage
from alpha_vantage.timeseries import TimeSeries
api_key = 'YOUR_API_KEY'
symbol = 'MSFT'
ts = TimeSeries(api_key)
data, meta_data = ts.get_daily(symbol=symbol, outputsize='full')
for date, ohlcv in data.items():
print(date, ohlcv)
- Quandl(https://www.quandl.com/)
需要先获取一个 API 密钥(https://www.quandl.com/sign-up-modal?defaultModal=showSignUp)。
pip install Quandl
import quandl
api_key = 'YOUR_API_KEY'
quandl.ApiConfig.api_key = api_key
symbol = 'WIKI/MSFT'
data = quandl.get(symbol)
print(data)
- Yahoo Finance(https://finance.yahoo.com/)
2.期货数据:
- TradingView(https://www.tradingview.com/)
- 新浪财经(Sina Finance):http://finance.sina.com.cn/futures/
要使用 Python 从这些网站获取期货数据,您可以使用 requests
和 pandas
库从网站抓取数据。这里以新浪财经为例,演示如何获取期货数据。
pip install requests pandas lxml
import requests
import pandas as pd
# 期货数据 URL 示例(上海期货交易所-铜)
url = "http://stock2.finance.sina.com.cn/futures/api/jsonp.php/var%20t1nf_cu=/InnerFuturesNewService.getDailyKLine?symbol=cu0&_=1"
# 请求数据
response = requests.get(url)
content = response.content.decode("utf-8")
# 处理 JSONP 格式数据
content = content[content.index("(") + 1 : content.index(")")]
# 将 JSON 数据转换为 pandas DataFrame
data = pd.read_json(content)
# 打印数据
print(data)
3.加密货币数据:
- CoinMarketCap(https://coinmarketcap.com/)
CoinMarketCap(加密货币数据):
需要先获取一个 API 密钥(https://pro.coinmarketcap.com/signup/)。
pip install requests
import requests
api_key = 'YOUR_API_KEY'
url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/listings/latest'
headers = {'Accepts': 'application/json', 'X-CMC_PRO_API_KEY': api_key}
response = requests.get(url, headers=headers)
data = response.json()
print(data)
- CoinGecko(https://www.coingecko.com/)
4.其他金融信息数据:
- FRED(Federal Reserve Economic Data,美联储经济数据,https://fred.stlouisfed.org/)
需要先获取一个 API 密钥(https://research.stlouisfed.org/useraccount/login/secure/)。
pip install fredapi pandas
from fredapi import Fred
import pandas as pd
api_key = 'YOUR_API_KEY'
fred = Fred(api_key=api_key)
data = pd.DataFrame(fred.get_series('SP500
- World Bank Open Data(世界银行开放数据,https://data.worldbank.org/)
读者福利:如果大家对Python感兴趣,这套python学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等习教程。带你从零基础系统性的学好Python!
零基础Python学习资源介绍
① Python所有方向的学习路线图,清楚各个方向要学什么东西
② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论
④ 20款主流手游迫解 爬虫手游逆行迫解教程包
⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解
⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解
⑦ 超300本Python电子好书,从入门到高阶应有尽有
⑧ 华为出品独家Python漫画教程,手机也能学习
⑨ 历年互联网企业Python面试真题,复习时非常方便
👉Python学习路线汇总👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
👉Python必备开发工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉100道Python练习题👈
检查学习结果。
👉面试刷题👈
资料领取
上述这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码输入“领取资料” 即可自动领取
或者
【点此链接】领取

好文推荐
了解python的前景:https://blog.csdn.net/SpringJavaMyBatis/article/details/127194835
了解python的兼职副业:https://blog.csdn.net/SpringJavaMyBatis/article/details/127196603