LeetCode刷题第7题【整数反转】---解题思路及源码注释

LeetCode刷题第7题【整数反转】—解题思路及源码注释

结果预览

代码执行效果

一、题目描述

给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。
如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。
假设环境不允许存储 64 位整数(有符号或无符号)。

示例 1:

输入:x = 123
输出:321

示例 2:

输入:x = -123
输出:-321

示例 3:

输入:x = 120
输出:21

示例 4:

输入:x = 0
输出:0

提示:

-231 <= x <= 231 - 1

二、解题思路

1、问题理解

该问题的关键在于如何处理整数反转,并且避免在反转过程中超出 32 位整数的范围。

2、解题思路

  • 问题分析
    该问题的关键在于如何处理整数反转,并且避免在反转过程中超出 32 位整数的范围。具体的步骤如下:
    • 反转数字:通过取余和除法的方法提取数字的每一位,然后将其反转。
    • 溢出处理:在反转过程中,我们需要检查是否超出了 32 位有符号整数的范围。
    • 负数的处理:我们需要正确处理负数,反转时应保留负号。
  • 步骤:
    • 处理负数:如果输入的数字是负数,则反转后的结果应该保留负号。可以在反转完成后加上负号。
    • 反转数字:利用取余和除法,我们可以从数字的末尾开始获取每一位,依次构建反转后的数字。
    • 溢出判断:在反转过程中,如果结果超过了 2^31 - 1(即 2147483647)或小于 -2^31(即 -2147483648),则返回 0。
  • 细节:
    • 负数:处理负数时,可以先将其转换为正数进行处理,最后再加上负号。
    • 溢出:反转时,我们需要判断反转的结果是否会超出 32 位整数的范围。在每次计算反转时,可以在放入新数字前判断是否会溢出。

三、代码实现及注释

1、源码实现

class Solution {
public:
    int reverse(int x) {
        int result = 0;
        
        while (x != 0) {
            int digit = x % 10;  // 提取最后一位数字
            x /= 10;  // 去除最后一位数字
            
            // 判断是否会溢出
            if (result > INT_MAX / 10 || (result == INT_MAX / 10 && digit > 7)) {
                return 0;  // 超出正整数的范围
            }
            if (result < INT_MIN / 10 || (result == INT_MIN / 10 && digit < -8)) {
                return 0;  // 超出负整数的范围
            }
            
            result = result * 10 + digit;  // 将数字加到反转结果的末尾
        }
        
        return result;
    }
};

2、代码解释

  • reverse 函数:
    • 该函数的作用是反转给定的整数 x,并返回反转后的结果。
  • while (x != 0):
    • 我们在循环中处理每一位数字,直到 x 为 0。
  • int digit = x % 10:
    • 获取当前数字的最后一位。
  • x /= 10:
    • 去除数字的最后一位,准备处理下一位。
  • 溢出判断:
    • 判断是否会溢出:
      • 如果 result 大于 INT_MAX / 10 或者 result 等于 INT_MAX / 10 且当前数字 digit 大于7,那么反转会超出正整数的范围。
      • 如果 result 小于 INT_MIN / 10 或者 result 等于 INT_MIN / 10 且当前数字 digit 小于-8,那么反转会超出负整数的范围。
  • result = result * 10 + digit:
    • 将当前数字添加到 result 的末尾,形成反转后的结果。
  • 返回结果:
    • 当 x 为 0 时,退出循环并返回反转后的结果。

四、执行效果

代码执行效果

1、时间和空间复杂度分析

  • 时间复杂度:O(log(x)),其中 x 是整数的绝对值。每次通过取余操作去掉 x 的一位数字,因此需要 O(log(x)) 次操作。
  • 空间复杂度:O(1),我们只使用了常数空间来存储 result 和 digit。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值