这道并查集的题目,一直没去做,虽然学并查集已经快一年了,但是这个题目一直没搞懂。时间拖的太久了,这个习惯不好,以后得对于不会的题目要及时解决,不能一直拖着不做。今天又看了一下这个题目,参看这别人的解题报告,终于搞懂了。我们对这个并查集维护两个数组p[] 和d[],分别表示x 的父节点和x与其父节点的关系。定义0表示x,y同类,1表示x被y吃,2表示x吃y。然后我们来看并查集的有关操作:
1. 查: 如果x与y同类,则会出现 find_x(x) == find_x(y) && d[x]=d[y]。利用这个我们可以进行判断同类条件是否正确。如果x吃y,则会出现(d[x] - d[y] + 3) %3 ==2, 同时find_x(x) == find_x(y) ,利用这一点我们可以判断x吃y是否正确,x被y吃则有(d[x] - d[y] + 3)%3 ==1 && find_x(x) == find_x(y) ;
2.对于查询中路径压缩的问题,这里采用递归的写法,在返回前需要修改该节点的父节点以及对应d[x]值。当当前节点的父节点改变的时候,该节点的d[x]需要修改。更改式子: d[x] = (d[x] + d[ p[x] ] ) %3 ,可以自行验证对应的所有的取值组合,都满足此关系。
3,并操作。如果根节点相同就不用并了。如果根节点不同,则需要定义两个根节点的关系,当两个子节点的关系给定的时候,其根节点的关系必定唯一。我们将传递的关系类型-1,这样就和我们对应的定义相同了。d[py] = ( -d[y] + d[x] + type + 3)%3 ,其中py = find_x(y);这里可以自行验证。
由以上三个过程我们就可以写出具体的程序了。
#include<stdio.h>
#include<string.h>
#define MAXN 50005
//定义节点之间的关系如下: 1表示节点x 被y吃,
//2表示节点x吃y,3表示节点x , y 同类
int p[MAXN] ;//用p数组表示某个节点的根节点
int d[MAXN] ;//用d数组表示某个节点与其根节点的关系
int n ;
int m ;
int cnt ;
void init(){
for(int i = 0 ; i <= n ; i ++){
p[i] = i ;
d[i] = 0 ;//与自己表现为同类关系
}
}
int find_x(int x){
if(x == p[x]){
return x ;
}
int tx = find_x(p[x]) ;
//路径压缩的时候,由于根节点的改变,所以需要重新计算对应的d[x]
d[x] = (d[x] + d[p[x]]) % 3 ;
p[x] = tx ;
return tx ;
}
void join(int x , int y , int type){
int tx ;
int ty ;
tx = find_x(x) ;
ty = find_x(y) ;
if(tx==ty){
return ;
}
d[ty] = (-d[y] + d[x] + 3 + type) % 3 ;
p[ty] = tx ;
return ;
}
void work(int type , int x , int y){
if(x > n || y > n){
cnt ++ ;
return ;
}
int tx = find_x(x) ;
int ty = find_x(y) ;
if(type==1){
if(tx == ty && d[x] != d[y]){
cnt ++ ;
return ;
}
join(x , y , type - 1) ;
return ;
}
if(tx == ty && (d[x] - d[y] + 3) % 3 != 2 || x == y){
cnt ++ ;
return ;
}
join(x , y , type - 1) ;
return ;
}
void read(){
int i ;
int type ;
int x ;
int y ;
cnt = 0 ;
scanf("%d %d" , &n , &m) ;
init() ;
for(i = 0 ; i < m ; i ++){
scanf("%d %d %d" , &type , &x , &y) ;
work(type , x , y) ;
}
printf("%d\n" , cnt) ;
}
int main(){
read() ;
return 0 ;
}