回溯题目,求解一个可行解,类似于8皇后问题。规则很简单,也是类似于8皇后的规则。玩过数独就很容易理解题意了。给定一个没有填写完整的数独,找出一个可行解即可。
标记每行每列以及3*3小矩阵的哪些数字已经被放过,每次放置前先检查是否合法(不出现重复数字),然后放置。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std ;
#define HASH(i , j) (i / 3) * 3 + ( j / 3 )
struct Node{
bool a[10] ;
void init(){
memset(a , 0 , sizeof(a) ) ;
}
};
int map[10][10] ;
Node x[10] ;//用于判断行中哪些数字已经出现过
Node y[10] ;//用于判断劣种哪些数字已经出现过
Node z[10] ;//用于判断子正方形中哪些数字已经出现过
int n ;
//打印输出结果
void print( ){
for(int i = 0 ; i < 9 ; i ++){
for(int j = 0 ; j < 9 ; j ++){
printf("%d" , map[i][j]) ;
}
printf("\n") ;
}
}
int dfs(int pos){
//确定sx,sy
int sx = pos / 9 ;
int sy = pos % 9 ;
//注意此处的判断条件
if(pos==81){
return 1 ;
}
//此处已经有数
if(map[sx][sy] != 0){
return dfs(pos + 1) ;
}
for(int i = 1 ; i <= 9 ; i ++){
//如果该格子所在的行列以及子格子
//已经含有对应的数字将过滤
int h = HASH(sx , sy) ;
//判断放置次数是否合法,如果合法则可以放置,如果不合法则继续下一次试探
if(x[sx].a[i] == 1 || y[sy].a[i] == 1 || z[h].a[i] == 1 ){
continue ;
}
else{
x[sx].a[i] = 1 ;
y[sy].a[i] = 1 ;
z[h].a[i] = 1 ;
map[sx][sy] = i ;
if(dfs(pos + 1)==1){
return 1 ;
}
map[sx][sy] = 0 ;
x[sx].a[i] = 0 ;
y[sy].a[i] = 0 ;
z[h].a[i] = 0 ;
}
}
return 0 ;
}
int main(){
scanf("%d" , &n) ;
char c ;
getchar() ;
int sx ;
int sy ;
bool flag ;
while(n--){
//读入多余的回车
//初始化
for(int i = 0 ; i <= 9 ; i ++){
x[i].init() ;
y[i].init() ;
z[i].init() ;
}
sx = 0 ;
sy = 0 ;
memset(map , 0 , sizeof(map)) ;
flag = 0 ;
for(int i = 0 ; i < 9 ; i ++){
for(int j = 0 ; j < 9 ; j ++){
c = getchar() ;
map[i][j] = c - '0' ;
//x方向标志为1
x[i].a[ map[i][j] ] = 1 ;
y[j].a[ map[i][j] ] = 1 ;
//投影计算
int k = HASH(i , j) ;
//记录对应的值
z[k].a[ map[i][j] ] = 1 ;
//找到一个空点
if( map[i][j] == 0 && !flag){
sx = i ;
sy = j ;
flag = 1 ;
}
}
getchar() ;
}
if(flag){
dfs( sx * 9 + sy ) ;
}
print() ;
}
return 0 ;
}