这个题目搁置了好久才有重新拿过来做的。
题目意思不难理解。TreeDP + 分组背包 方程: dp[i][j] = max{ dp[i][j] , dp[i][k] + dp[s][j-k] - edge[i][s]},其中s表示i的儿子节点,edge[i][s]表示i到s的边权,dp[i][j]从树根i的子树中选取j个叶子所需要的最小代价。不过这个题目比较卡时限,需要优化。由于叶子的数目非常少,所以我们可以直接将每棵子树中的叶子数目跟新到对应的树根中,然后按照这个数目来进行递推。代码:
/*
*author : csuchenan
*PROG : POJ1155
*Algorithm : Tree Dp dp[i][j]表示以i为根的子树中选取j个客户
* 得到的最大价值,然后分组背包
*notice : 在进行DFS的时候注意每次DP的时候元素的取值范围,
* 太大会超时,时间复杂度为O(n^3) ,每次将对应的子
* 树的叶子节点的个数传递到根,这样会降低时间复杂
* 度,就可以过。
*csuchenan 1155 Accepted 35652K 360MS C++ 1408B
*/
#include <cstdio>
#include <cstring>
#include <vector>
#define maxn 3005
#define INF 0xc3c3c3c3
using std::vector ;
struct node{
int f ;
int s ;
node(int ff = 0 , int ss = 0)
: f(ff) , s(ss) {} ;
};
vector<node> G[maxn] ;
int val[maxn] ;
int dp[maxn][maxn] ;
int n ;
int m ;
void read(){
scanf("%d%d" , &n , &m) ;
memset(dp , 0xc3 , sizeof(dp)) ;
int p , q , w ;
for(int i = 1 ; i <= n - m ; i ++){
scanf("%d" , &p) ;
while(p--){
scanf("%d%d" , &q , &w) ;
G[i].push_back(node(q , w)) ;
}
}
for(int i = n - m + 1 ; i <= n ; i ++)
scanf("%d" , &val[i]) ;
}
int dfs(int v){
int num = 0 ;
for(vector<node>::size_type i = 0 ; i != G[v].size() ; i ++){
int u = G[v][i].f ;
num += dfs(u) ;
}
if(G[v].size() == 0){
dp[v][1] = val[v] ;
}
dp[v][0] = 0 ;
for(vector<node>::size_type i = 0 ; i != G[v].size() ; i ++){
int u = G[v][i].f ;
int w = G[v][i].s ;
for(int j = num ; j >= 1 ; j --){
for(int k = 0 ; k <= j ; k ++){
if(dp[v][j] < dp[v][j - k] + dp[u][k] - w){
dp[v][j] = dp[v][j - k] + dp[u][k] - w ;
}
}
}
}
if(G[v].size() == 0)
return 1 ;
return num ;
}
int main(){
//freopen("POJ1155.txt" ,"r" , stdin) ;
read() ;
dfs(1) ;
int i ;
for(i = m ; i > 0 && dp[1][i] < 0 ; i --) ;
printf("%d\n" , i > 0 ? i : 0) ;
return 0 ;
}