(学习笔记?)证明:若x1,x2,...,xn均互质,则在1~x1·x2·...·xn中,不为任何xi的倍数的数共有(x1-1)(x2-1)...(xn-1)个

这个奇怪(?)的结论脑子一拍就容易明白,但是它的证明曾卡了我1个多小时,写篇文章纪念一下()
如题:

证明:若 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn 均互质,则在 1 1 1~ x 1 ⋅ x 2 ⋅ . . . ⋅ x n x_1·x_2·...·x_n x1x2...xn 中,不为任何 x i x_i xi 的倍数的数共有 ( x 1 − 1 ) ( x 2 − 1 ) . . . ( x n − 1 ) (x_1-1)(x_2-1)...(x_n-1) (x11)(x21)...(xn1)
(下文中将 x 1 ⋅ x 2 ⋅ . . . ⋅ x n x_1·x_2·...·x_n x1x2...xn 记作 S S S )

第一种方法:展开(或许不是那么严谨?)

我们将式子 ( x 1 − 1 ) ( x 2 − 1 ) . . . ( x n − 1 ) (x_1-1)(x_2-1)...(x_n-1) (x11)(x21)...(xn1) 展开,不难发现,展开后每一项都应由 n n n 个数字相乘得到,若一个展开项是由 m m m x i x_i xi (与 n − m n-m nm − 1 -1 1 )相乘得到,则它的代数意义可以描述为:在 1 1 1~ S S S 中,另外 n − m n-m nm x i x_i xi 的乘积的倍数个数(设这 m m m 个数的乘积为 X X X ,剩下 n − m n-m nm 个数的乘积为 Y Y Y ,显然 X ∣ S , X ⋅ Y = S X|S,X·Y=S XS,XY=S ,所以可以表示为倍数个数)。
n = 3 n=3 n=3 为例:
( x 1 − 1 ) ( x 2 − 1 ) ( x 3 − 1 ) = x 1 x 2 x 3 ( 1 的 倍 数 个 数 ) − x 2 x 3 ( x 1 的 倍 数 个 数 ) − x 1 x 3 ( x 2 的 倍 数 个 数 ) − x 1 x 2 ( x 3 的 倍 数 个 数 ) + x 3 ( x 1 x 2 的 倍 数 个 数 ) + x 2 ( x 1 x 3 的 倍 数 个 数 ) + x 1 ( x 2 x 3 的 倍 数 个 数 ) \begin{aligned} (x_1-1)(x_2-1)(x_3-1)=&x_1x_2x_3(1的倍数个数)-x_2x_3(x_1的倍数个数)-x_1x_3(x_2的倍数个数)-x_1x_2(x_3的倍数个数)\\ &+x_3(x_1x_2的倍数个数)+x_2(x_1x_3的倍数个数)+x_1(x_2x_3的倍数个数) \end{aligned} (x11)(x21)(x31)=x1x2x3(1)x2x3(x1)x1x3(x2)x1x2(x3)+x3(x1x2)+x2(x1x3)+x1(x2x3)

看到这个加减符号有没有想到什么?没错,就是容斥原理(显然成立)。

第二种方法:类欧拉函数

因为每个 x i x_i xi 的倍数在 1 1 1~ S S S 中都是均匀分布,且 x i x_i xi 均两两互质,所以我们可以将每个 x i x_i xi (不管是质数与否)看作 S S S 的一个"质"因子,则根据求解欧拉函数的方法,对于每个 x i x_i xi 我们将 a n s ∗ = x i − 1 x i ans*=\frac{x_i-1}{x_i} ans=xixi1
由这种方式得到的最终答案:
a n s = S ⋅ x 1 − 1 x 1 ⋅ x 2 − 1 x 2 ⋅ . . . ⋅ x n − 1 x n = S ⋅ ( x 1 − 1 ) ( x 2 − 1 ) . . . ( x n − 1 ) S = ( x 1 − 1 ) ( x 2 − 1 ) . . . ( x 2 − 1 ) \begin{aligned} ans=&S·\frac{x_1-1}{x_1}·\frac{x_2-1}{x_2}·...·\frac{x_n-1}{x_n}\\ =&S·\frac{(x_1-1)(x_2-1)...(x_n-1)}{S}\\ =&(x_1-1)(x_2-1)...(x_2-1) \end{aligned} ans===Sx1x11x2x21...xnxn1SS(x11)(x21)...(xn1)(x11)(x21)...(x21)

得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值