F题: A Stack of CDs
原题链接:https://ac.nowcoder.com/acm/contest/33190/F
题目大意
现在 n ( 1 ≤ n ≤ 1000 ) n(1\le n\le 1000) n(1≤n≤1000) 个圆依次放在桌上,每个圆的圆心坐标和半径已知,已知其从下向上的顺序。现在从上向下看,求所有可见圆的可见边的长度和。
题解
对于每一个圆,枚举每个在它上方的圆,记录下被覆盖的部分(用极角保存),然后对被覆盖的部分取并减去再加上原周长即可。
两个圆的关系分情况讨论:
- 两个圆无重合部分(无影响)
- 下面的圆包含上面的圆(无影响)
- 上面的圆包含下面的圆(下面的圆无贡献)
- 相交
下面只讨论相交的做法
如上图,在 △ A B C \triangle ABC △ABC 中, A C AC AC 为圆 A A A 的半径, B C BC BC 为圆 B B B 的半径, A B AB AB 为圆心间的距离,均易求得,因而可由余弦定理求得 ∠ B A D = ∠ B A C = A B 2 + A C 2 − B C 2 2 A B ⋅ A C \angle BAD=\angle BAC=\frac{AB^2+AC^2-BC^2}{2AB·AC} ∠BAD=∠BAC