NOI-1.4(20) 求一元二次方程的根

20:求一元二次方程的根

描述

利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2+ bx + c =0的根,其中a不等于0。

输入

输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。

输出

输出一行,表示方程的解。
b2 = 4 * a * c,则两个实根相等,则输出形式为:x1=x2=...。
b2 > 4 * a * c,则两个实根不等,则输出形式为:x1=...;x2 = ...,其中x1>x2。
b2 < 4 * a * c,则有两个虚根,则输出:x1=实部+虚部i;x2=实部-虚部i,即x1的虚部系数大于等于x2的虚部系数,实部为0时不可省略。实部 = -b / (2*a), 虚部 = sqrt(4*a*c-b*b) / (2*a)

所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。

示例输入

样例输入1

1.0 2.0 8.0

样例输入2

1 0 1

示例输出

样例输出1

x1=-1.00000+2.64575i;x2=-1.00000-2.64575i

样例输出2

x1=0.00000+1.00000i;x2=0.00000-1.00000i

分析

在△<0时,需要避免实部是0带有负号,要把负的0变为正的零。

代码

#include <iostream>
#include <iomanip>
#include <cmath>

using namespace std;

int main()
{
	double a, b, c;	//声明三个浮点数
	cin >> a >> b >> c;
	double x1, x2, d;	
	d = b * b - 4 * a * c;	//d为△delta
	x1 = ((-1) * b + sqrt(d)) / (2 * a);	//x1
	x2 = ((-1) * b - sqrt(d)) / (2 * a);	//x2
	if (d == 0)	//△ = 0
	{
		cout << fixed << setprecision(5) << "x1=x2=" << x1 << endl;
	}
	else if (d > 0)	//△ > 0
	{
		cout << fixed << setprecision(5)
			<< "x1=" << x1
			<< ";x2=" << x2
			<< endl;
	}
	else    //△ < 0
	{
		double e,f;	//e为实部,f为虚部
		e = (-1) * b / (2 * a);	//实部
		f = sqrt((-1) * d) / (2 * a);	//虚部
		if (e == 0)	//实部为0是正的
		{
			e = (-1) * e;
		}
		cout << fixed << setprecision(5)
			<< "x1=" << e << '+' << f << 'i'
			<< ";x2=" << e << '-' << f << 'i'
			<< endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值