20:求一元二次方程的根
描述
利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2+ bx + c =0的根,其中a不等于0。
输入
输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。
输出
输出一行,表示方程的解。
若b2 = 4 * a * c,则两个实根相等,则输出形式为:x1=x2=...。
若b2 > 4 * a * c,则两个实根不等,则输出形式为:x1=...;x2 = ...,其中x1>x2。
若b2 < 4 * a * c,则有两个虚根,则输出:x1=实部+虚部i;x2=实部-虚部i,即x1的虚部系数大于等于x2的虚部系数,实部为0时不可省略。实部 = -b / (2*a), 虚部 = sqrt(4*a*c-b*b) / (2*a)
所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。
示例输入
样例输入1
1.0 2.0 8.0
样例输入2
1 0 1
示例输出
样例输出1
x1=-1.00000+2.64575i;x2=-1.00000-2.64575i
样例输出2
x1=0.00000+1.00000i;x2=0.00000-1.00000i
分析
在△<0时,需要避免实部是0带有负号,要把负的0变为正的零。
代码
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
double a, b, c; //声明三个浮点数
cin >> a >> b >> c;
double x1, x2, d;
d = b * b - 4 * a * c; //d为△delta
x1 = ((-1) * b + sqrt(d)) / (2 * a); //x1
x2 = ((-1) * b - sqrt(d)) / (2 * a); //x2
if (d == 0) //△ = 0
{
cout << fixed << setprecision(5) << "x1=x2=" << x1 << endl;
}
else if (d > 0) //△ > 0
{
cout << fixed << setprecision(5)
<< "x1=" << x1
<< ";x2=" << x2
<< endl;
}
else //△ < 0
{
double e,f; //e为实部,f为虚部
e = (-1) * b / (2 * a); //实部
f = sqrt((-1) * d) / (2 * a); //虚部
if (e == 0) //实部为0是正的
{
e = (-1) * e;
}
cout << fixed << setprecision(5)
<< "x1=" << e << '+' << f << 'i'
<< ";x2=" << e << '-' << f << 'i'
<< endl;
}
return 0;
}