这道题不应该用kSum套路,虽然可以解出来,但是时间复杂度很高O(n^3)
1. 此题不需要去重,也太需要用到元素的大小关系,所以不需要排序
2. 每个数都从独立的数组里找出来,不存在kSum那样必须要在已确定的两个数字后面的情况,则无需每一层都用内嵌循环
本题思路:
先双层循环组合AB,将每个A[i] + B[j]的值与出现次数存于HashMap中,再组合CD的两个数字,从map中取得相补的数字key对应的value就是这一对CD能组成的答案个数,将所有CD能组成的答案个数加起来就是最终答案。
这样组合AB是O(n^2)的时间复杂度,组合CD也是O(n^2)的时间复杂度,整个题解仍然是O(n^2)的时间复杂度。
另外,题解中巧妙运用HashMap类的getOrDefault()方法设置key不存在时的返回值,如果直接用map()方法,当map中没有要找的key,会返回null。
/**
* 自己的解法,用的kSum套路
* 先确定AB数组中的数字,再分别sort()CD数组,然后用双指针分别从C头和D尾开始搜索使四数之和等于target
* 时间faster than 5.06%,空间less than 99.99%
*/
class Solution {
public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {
if (A.length == 0 || B.length == 0 || C.length == 0 || D.length == 0) return 0;
int ans = 0;
Arrays.sort(C);
Arrays.sort(D);
for (int i = 0; i < A.length; i++) {
for (int j = 0; j < B.length; j++) {
int start = 0, end = D.length - 1;
while (start < C.length && end >= 0) {
int sum = A[i] + B[j] + C[start] + D[end];
if (sum > 0) end--;
else if (sum < 0) start++;
else {
int cnt_c = 1, cnt_d = 1;
while (start + 1 < C.length && C[start] == C[start + 1]) {
start++;
cnt_c++;
}
while (end - 1 >= 0 && D[end] == D[end - 1]) {
end--;
cnt_d++;
}
ans += cnt_c * cnt_d;
start++;
end--;
}
}
}
}
return ans;
}
}
/**
* 先将所有AB数组的数字组合情况记录在HashMap中
* 再组合CD数组的数字,在HashMap中寻找匹配的值
* 时间复杂度O(max(n*m, p*q))
* 本题巧妙运用HashMap类的getOrDefault()方法,如果直接用map()方法,当map中没有要找的key,会返回null
*/
class Solution {
public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {
if (A.length == 0 || B.length == 0 || C.length == 0 || D.length == 0) return 0;
int ans = 0;
HashMap<Integer, Integer> map = new HashMap<>(); // 存储前两位数只和与出现次数的对应关系
for (int i = 0; i < A.length; i++)
for (int j = 0; j < B.length; j++)
map.put(A[i] + B[j], map.getOrDefault(A[i] + B[j], 0) + 1);
for (int i = 0; i < C.length; i++)
for (int j = 0; j < D.length; j++)
ans += map.getOrDefault(- C[i] - D[j], 0); // 在map中找与当前C[i]+D[j]匹配的AB数组数字组合有几个
return ans;
}
}