一、PCA思想
PCA是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。(数据降维方法)
二、PCA算法步骤
围绕问题:如何去寻找适合的K才能最大程度保留原有的信息??
思路:希望投影后的投影值尽可能分散,因为如果重叠就会有样本消失。
当然这个也可以从熵的角度进行理解,熵越大所含信息越多。
PCA算法步骤:
举例:
三、代码实现
1、数据预处理
clear;
% 1.人脸数据集的导入与数据处理(400张图,一共40人,一人10张)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
reshaped_faces=[];
for i=1:40
for j=1:10
if(i<10)
a=imread(strcat('C:\AR_Gray_50by40\AR00',num2str(i),'-',num2str(j),'.tif'));
else
a=imread(strcat('C:\AR_Gray_50by40\AR0',num2str(i),'-',num2str(j),'.tif'));
end
b = reshape(a,2000,1); %将每一张人脸拉成列向量
b=double(b); %utf-8转换为double类型,避免人脸展示时全灰的影响
reshaped_faces=[reshaped_faces, b];
end
end
% 取出前30%作为测试数据,剩下70%作为训练数据
test_data_index = [];
train_data_index = [];
for i=0:39
test_data_index = [test_data_index 10*i+1:10*i+3];
train_data_index = [train_data_index 10*i+4:10*(i+1)];
end
train_data = reshaped_faces(:,train_data_index);
test_data = reshaped_faces(:, test_data_index);
% 2.图像求均值,中心化
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 求平均脸
mean_face = mean(train_data,2);
%waitfor(show_face(mean_face)); %平均脸展示,测试用
% 中心化
centered_face = (train_data - mean_face);
%用于展示中心化后某些训练图片 测试用
%waitfor(show_faces(centered_face));
% 3.求协方差矩阵、特征值与特征向量并排序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 协方差矩阵
cov_matrix = centered_face * centered_face';
[eigen_vectors, dianogol_matrix] = eig(cov_matrix);
% 从对角矩阵获取特征值
eigen_values = diag(dianogol_matrix);
% 对特征值按索引进行从大到小排序
[sorted_eigen_values, index] = sort(eigen_values, 'descend');
% 获取排序后的征值对应的特征向量
sorted_eigen_vectors = eigen_vectors(:, index);
% 特征脸(所有)
all_eigen_faces = sorted_eigen_vectors;
%用于展示某些特征脸 测试用
waitfor(show_faces(all_eigen_faces));
2、重构
%%人脸重构
% 取出第一个人的人脸,用于重构
single_face = centered_face(:,1);
index = 1;
for dimensionality=20:20:160
% 取出相应数量特征脸(前n大的特征向量,用于重构人脸)
eigen_faces = all_eigen_faces(:,1:dimensionality);
% 重建人脸并显示
rebuild_face = eigen_faces * (eigen_faces' * single_face) + mean_face;
subplot(2, 4, index); %两行四列
index = index + 1;
fig = show_face(rebuild_face);
title(sprintf("dimensionality=%d", dimensionality));
if (dimensionality == 160)
waitfor(fig);
end
end
3、识别
% 人脸识别
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
index = 1;
Y = [];
% KNN
for k=1:6
for i=10:10:160
% 取出相应数量特征脸
eigen_faces = all_eigen_faces(:,1:i);
% 测试、训练数据降维
projected_train_data = eigen_faces' * (train_data - mean_face);
projected_test_data = eigen_faces' * (test_data - mean_face);
% 用于保存最小的k个值的矩阵
% 用于保存最小k个值对应的人标签的矩阵
minimun_k_values = zeros(k,1);
label_of_minimun_k_values = zeros(k,1);
% 测试脸的数量
test_face_number = size(projected_test_data, 2);
% 识别正确数量
correct_predict_number = 0;
% 遍历每一个待测试人脸
for each_test_face_index = 1:test_face_number
each_test_face = projected_test_data(:,each_test_face_index);
% 先把k个值填满,避免在迭代中反复判断
for each_train_face_index = 1:k
minimun_k_values(each_train_face_index,1) = norm(each_test_face - projected_train_data(:,each_train_face_index));
label_of_minimun_k_values(each_train_face_index,1) = floor((train_data_index(1,each_train_face_index) - 1) / 10) + 1;
end
% 找出k个值中最大值及其下标
[max_value, index_of_max_value] = max(minimun_k_values);
% 计算与剩余每一个已知人脸的距离
for each_train_face_index = k+1:size(projected_train_data,2)
% 计算距离
distance = norm(each_test_face - projected_train_data(:,each_train_face_index));
% 遇到更小的距离就更新距离和标签
if (distance < max_value)
minimun_k_values(index_of_max_value,1) = distance;
label_of_minimun_k_values(index_of_max_value,1) = floor((train_data_index(1,each_train_face_index) - 1) / 10) + 1;
[max_value, index_of_max_value] = max(minimun_k_values);
end
end
% 最终得到距离最小的k个值以及对应的标签
% 取出出现次数最多的值,为预测的人脸标签
predict_label = mode(label_of_minimun_k_values);
real_label = floor((test_data_index(1,each_test_face_index) - 1) / 10)+1;
if (predict_label == real_label)
%fprintf("预测值:%d,实际值:%d,正确\n",predict_label,real_label);
correct_predict_number = correct_predict_number + 1;
else
%fprintf("预测值:%d,实际值:%d,错误\n",predict_label,real_label);
end
end
% 单次识别率
correct_rate = correct_predict_number/test_face_number;
Y = [Y correct_rate];
fprintf("k=%d,i=%d,总测试样本:%d,正确数:%d,正确率:%1f\n", k, i,test_face_number,correct_predict_number,correct_rate);
end
end
% 求不同k值不同维度下的人脸识别率及平均识别率
Y = reshape(Y,k,16);
waitfor(waterfall(Y));
avg_correct_rate=mean(Y);
waitfor(plot(avg_correct_rate));
4、降维可视化
% 人脸数据二三维可视化(可推广到不同数据集)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=[2 3]
% 取出相应数量特征脸
eigen_faces = all_eigen_faces(:,1:i);
% 投影
projected_test_data = eigen_faces' * (test_data - mean_face);
color = [];
for j=1:120
color = [color floor((j-1)/4)*5];
end
% 显示
if (i == 2)
waitfor(scatter(projected_test_data(1, :), projected_test_data(2, :), [], color));
else
waitfor(scatter3(projected_test_data(1, :), projected_test_data(2, :), projected_test_data(3, :), [], color));
end
end
结果:降至三维可视化图。
四、总结
这里对PCA算法做一个总结。作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。
PCA算法的主要优点有:
1)仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
2)各主成分之间正交,可消除原始数据成分间的相互影响的因素。
3)计算方法简单,主要运算是特征值分解,易于实现。
PCA算法的主要缺点有:
1)主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
2)方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。