一、需求
-
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
-
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
二、动态规划法
2.1 思路分析
- 题目要求 0 <= n <= 100,n == 0这里就很奇怪,默认要求是返回1;
- n == 1时,同样返回1,这里没有问题;
- 新建dp[ ]数组,初始化dp[1]与dp[2],状态转移方程为dp[i] = dp[i-1]+dp[i-2],dp[i]表示i个台阶对应的跳法数目;
2.2 代码实现
class Solution {
public int numWays(int n) {
//这里为啥n == 0也要返回1
if(n == 0 || n == 1) return 1;
int[] dp = new int[n+1];
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++) {
dp[i] = dp[i-1] + dp[i-2];
dp[i] = dp[i] % 1000000007;
}
return dp[n];
}
}
2.3 动态规划优化
class Solution {
public int numWays(int n) {
if(n <= 1) return 1;
int tmp1 = 1;
int tmp2 = 2;
int cur = 2;
for(int i = 3; i <= n; i++) {
cur = (tmp1 + tmp2) % 1000000007;
tmp1 = tmp2;
tmp2 = cur;
}
return cur;
}
}
2.4 复杂度分析
- 时间复杂度为O(n);
- 空间复杂度为O(n);
三、递归法
- 思路与动态规划类似,当递归次数太多时,不推荐使用
class Solution {
public int numWays(int n) {
if(n == 0 || n == 1) return 1;
if(n == 2) return 2;
return (numWays(n-1)+numWays(n-2)) % 1000000007;
}
}