青蛙跳台阶问题

一、需求

  • 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

  • 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

 

二、动态规划法

2.1  思路分析

  1. 题目要求 0 <= n <= 100,n == 0这里就很奇怪,默认要求是返回1;
  2. n == 1时,同样返回1,这里没有问题;
  3. 新建dp[ ]数组,初始化dp[1]与dp[2],状态转移方程为dp[i] = dp[i-1]+dp[i-2],dp[i]表示i个台阶对应的跳法数目;

2.2  代码实现

class Solution {
    public int numWays(int n) {
        //这里为啥n == 0也要返回1
        if(n == 0 || n == 1) return 1;

        int[] dp = new int[n+1];
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++) {
            dp[i] = dp[i-1] + dp[i-2];
            dp[i] = dp[i] % 1000000007;
        }
        return dp[n];
    }
}

2.3  动态规划优化 

class Solution {
    public int numWays(int n) {
        if(n <= 1) return 1;
        int tmp1 = 1;
        int tmp2 = 2;
        int cur = 2;
        for(int i = 3; i <= n; i++) {
            cur = (tmp1 + tmp2) % 1000000007;
            tmp1 = tmp2;
            tmp2 = cur;
        }
        return cur;
    }
}

2.4  复杂度分析

  • 时间复杂度为O(n);
  • 空间复杂度为O(n);

三、递归法

  • 思路与动态规划类似,当递归次数太多时,不推荐使用
class Solution {
    public int numWays(int n) {
        if(n == 0 || n == 1) return 1;
        if(n == 2) return 2;

        return (numWays(n-1)+numWays(n-2)) % 1000000007;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值