二叉树中和为某一值的路径

一、需求

  • 输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径。

  • 从树的根节点开始往下一直到叶节点所经过的节点形成一条路径。

示例:
给定如下二叉树,以及目标和 sum = 22,

              5
             / \
            4   8
           /   / \
          11  13  4
         /  \    / \
        7    2  5   1
返回:

[
   [5,4,11,2],
   [5,8,4,5]
]

二、回溯法

2.1  思路分析

  1. 本题要求将所有符合条件的路径加入到一个集合中,故定义一个dfs方法,功能是将符合条件的路径加入到集合中;
  2. 采用先序遍历框架,如当前节点路径和不满足要求,那么可以dfs方法可以分解为当前节点左子树的路径和是否等于目标值减当前节点值当前节点右子树的路径和是否等于目标值减当前节点值
  3. 定义path变量来记录路径,符合条件就加入集合,最后还要回溯回去,比如说现在有一棵树,有3个节点,第一层1个,第二层2个,当左子树递归结束后,此时的左子树路径和不管符不符合条件,都应该回溯到根节点,然后判断其右子树路径和是否符合条件;

2.3  代码实现

class Solution {
    List<List<Integer>> res = new LinkedList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
        if(root == null) return res;
        dfs(root, targetSum);
        return res;
    }
    public void dfs(TreeNode root, int targetSum) {
        if(root == null) return;
        path.add(root.val);
        int tmp = targetSum - root.val;
        if(root.left == null && root.right == null && tmp == 0) {
            res.add(new LinkedList(path));
        }
        dfs(root.left, tmp);
        dfs(root.right, tmp);
        path.removeLast();
    }
}

2.4  复杂度分析

  • 时间复杂度为O(N^2)
  • 空间复杂度为O(N),最坏情况下,当树退化为链表,path最多存储N个元素。

三、参考地址

作者:Krahets

链接:https://leetcode-cn.com/problems/er-cha-shu-zhong-he-wei-mou-yi-zhi-de-lu-jing-lcof/solution/mian-shi-ti-34-er-cha-shu-zhong-he-wei-mou-yi-zh-5/

问题描述: 给定二叉树个整数目标,找出所有从根节点到叶子节点的路径,使得路径上的节点等于目标。 解题思路: 我们可以使用深度优先搜索(DFS)的思想来解决这个问题。具体步骤如下: 1. 定义个列表path,用于存储当前的路径。 2. 递归遍历每个节点: a. 将当前节点添加到path中。 b. 如果当前节点是叶子节点且路径上的节点等于目标,则将当前路径添加到结果中。 c. 递归遍历当前节点的左子树右子树。 d. 在递归结束后,将当前节点从path中移除,以便开始探索其他路径。 3. 返回结果列表,即所有路径等于目标路径。 代码实现: ``` class Solution: def pathSum(self, root: TreeNode, targetSum: int) -> List[List[int]]: def dfs(node, path, target): if not node: return path.append(node.val) if not node.left and not node.right and sum(path) == target: res.append(path.copy()) dfs(node.left, path, target) dfs(node.right, path, target) path.pop() res = [] dfs(root, [], targetSum) return res ``` 以上代码中,我们定义了个辅助函数dfs来进行递归遍历。在遍历的过程中,我们使用列表path来存储当前路径,如果路径上的节点等于目标,则将当前路径添加到结果列表res中。最后返回结果res。 时间复杂度分析: 假设二叉树的节点数为n,则时间复杂度为O(n),因为我们需要遍历每个节点次。需要注意的是,在每个节点处,我们都会调用sum函数来计算当前路径的节点,因此总的时间复杂度还需要考虑到sum函数的时间复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值