从中序与后序遍历序列构造二叉树

一、需求

  • 根据一棵树的中序遍历与后序遍历构造二叉树。

例如,给出

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

注意:
你可以假设树中没有重复的元素。

二、递归法

2.1  思路分析

  1. 中序遍历的特点是"左根右",后序遍历的特点是"左右根",然后如何根据根节点来分别划分中序、后序数组呢?
  2. 找到根节点很容易,它是后序遍历中最后的元素,然后在中序遍历中确定根节点出现的索引,然后就能确定左子树的节点个数,各个边界也能随之确定;

2.2  代码实现

class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        return buildTree(inorder, 0, inorder.length - 1, postorder, 0, 
        postorder.length - 1);
    }
    //该方法用来递归的根据前序与中序数组构造二叉树
    private TreeNode buildTree(int[] inorder, int inStart, int inEnd, 
    int[] postorder, int poStart, int poEnd) {
        if(inStart > inEnd) {
            return null;
        }
        int rootVal = postorder[poEnd];
        //确定根节点在中序遍历中的索引
        int index = 0;
        for(int i = inStart; i <= inEnd; i++) {
            if(inorder[i] == rootVal) {
                index = i;
                break;
            }
        }
        //确定左子树的节点数
        int leftSize = index - inStart;
        //构建二叉树
        TreeNode root = new TreeNode(rootVal);
        root.left = buildTree(inorder, inStart, index - 1, postorder, 
        poStart, poStart + leftSize - 1);
        root.right = buildTree(inorder, index + 1, inEnd, postorder, 
        poStart + leftSize, poEnd - 1);
        return root;
    }
}

2.3  复杂度分析

  • 时间复杂度为O(N);
  • 空间复杂度为O(N);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值