1. 题目描述
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
2. 示例
3. 思路
从底层开始返回,遇到空返回0,其余往上层返回时加1,并且每层都要比对返回左右子树层数是否相差大于1,大于返回最小值。
4. 遇上的问题
无
5. 具体实现代码
自己写的代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
//原给的方法
public boolean isBalanced(TreeNode root) {
//通过确定返回值大小从而确定是否是高度平衡二叉树
if(depth(root)<0) return false;
else return true;
}
//一个判断树深度的方法
public int depth(TreeNode node){
if(node==null){
return 0;
}
//左子树深度
int leftNum = depth(node.left);
//右子树深度
int rightNum = depth(node.right);
//判断左右子树深度之差是否超过1
if(leftNum-rightNum>1||leftNum-rightNum<-1){
//是的话,返回最小值。
return Integer.MIN_VALUE;
}else{
//不是的话,将当前最大值+1返回。
return Math.max(leftNum,rightNum)+1;
}
}
}
6. 学习收获,官方一如既往的妙啊
class Solution {
public boolean isBalanced(TreeNode root) {
//写了一个判断左右子树高的方法
return height(root) >= 0;
}
public int height(TreeNode root) {
//递归出口,抵达叶子节点的子节点
if (root == null) {
return 0;
}
//记录左子树值
int leftHeight = height(root.left);
//记录右子树值
int rightHeight = height(root.right);
//妙就比我妙在这一步
//通过判断子树返回的值是否为-1,从而避免了一定的计算量
if (leftHeight == -1 || rightHeight == -1 || Math.abs(leftHeight - rightHeight) > 1) {
return -1;
} else {
//子树符合条件,挑选大的返回值+1返回给上一层
return Math.max(leftHeight, rightHeight) + 1;
}
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/balanced-binary-tree/solution/ping-heng-er-cha-shu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
7 题目来源
学习总是如此美妙,特别是遇到简单题里的简单题的时候。------swrici