Codeforces Round #677 (Div. 3) F. Zero Remainder Sum (DP)

题目链接

题意 :给你一个 n ∗ m n*m nm的矩阵,每行最多可以选择 m 2 \frac{m}{2} 2m个元素,将它们的权值加起来,问最后可以得到的最大的能被 k k k整除的值是多少。
题解 :用 d p [ i ] [ j ] dp[i][j] dp[i][j]来维护 1 − i 1-i 1i行使余数为j时能取到的最大值,每次去更新一行前,先用 r o w [ j ] [ l ] [ p ] row[j][l][p] row[j][l][p]来维护这一行到第 j j j个元素时,在取了 l l l个元素,余数为 p p p的情况下能得到的最大值,再用 r o w [ j ] [ l ] [ p ] row[j][l][p] row[j][l][p]来对 d p [ i ] [ j ] dp[i][j] dp[i][j]进行维护。注意每次维护都要判断前一状况是否合法,所以将 r o w row row d p dp dp都初始化为 − 1 -1 1

reply:一杯茶,一包烟,一道 d p dp dp写一天。自己对于 d p dp dp的题目都不是很了解,一直都靠队友写,所以写这道题目的时候很痛苦。最大的 b u g bug bug是用没有判断上一状态是否合法,同时进行状态转移的时候用当前的值来维护了当前状态,所以在维护 r o w row row的时候会重复计算,最后自己写了个 l l l先从大到小转移,再从小到大维护的版本。看了大佬的题解才知道了从 0 0 0开始,维护下一状态。
换句话说,就是太菜了Orz。

#include <bits/stdc++.h>
using namespace std;

#define endl "\n"

typedef long long ll;

const int maxn = 77;
int n, m, k;
int a[maxn][maxn], row[maxn][maxn][maxn], dp[maxn][maxn];

void getRow(int i) {
	memset(row, - 1, sizeof(row));
	row[0][0][0] = 0;
	for (int j = 0; j < m; ++j) {
		for (int l = 0; l <= m / 2; ++l) {
			for (int p = 0; p < k; ++p) {
				if (row[j][l][p] >= 0) {
					row[j + 1][l][p] = max(row[j + 1][l][p], row[j][l][p]);
					if (l < m / 2) row[j + 1][l + 1][(p + a[i][j + 1]) % k] = max(row[j + 1][l + 1][(p + a[i][j + 1]) % k], row[j][l][p] + a[i][j + 1]);
				}
			}
		}
	}
}

void solve() {
	memset(dp, -1, sizeof(dp));
	dp[0][0] = 0;
	for (int i = 1; i <= n; ++i) {
		for (int j = 1; j <= m; ++j) {
			cin >> a[i][j];
		}
	}
	for (int i = 1; i <= n; ++i) {
		getRow(i);
		for (int p = 0; p < k; ++p) {
			int tmp = -1;
			for (int l = 0; l <= m/2; ++l) {
				tmp = max(tmp, row[m][l][p]);
			}
			if (tmp < 0) continue;
			for (int pre = 0; pre < k; ++pre) {
				if (dp[i - 1][pre] < 0) continue;
				dp[i][(pre + p) % k] = max(dp[i][(pre + p) % k], dp[i - 1][pre] + tmp);
			}
		}
	}
	cout << dp[n][0] << endl;
}

int _T;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);cout.tie(nullptr);
	cin >> n >> m >> k;
    solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值