Median of Two Sorted Arrays(Need edition)

题目

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).


分析

1.  A,B有序。

2.  时间复杂度限制,联想二分查找。

提示

偶数n个数字的中位数为(A[(n-1)/2] + A[(n-1)/2+1])/2, 奇数m个数字的中位数为A[(n-1)/2]。

方案

1.  此题Discuss板块中有Leetcoder提出,使用Quick Sort,插入排序也可以Accept,二者复杂度分别为O((m+n)log(m+n))、O(m+n),都大于O(log(m+n))。

2.  变形的二分查找,时间复杂度O(log(m+n))。

总结

使用插入排序占用288ms。

CODE

class Solution {
public:
    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        vector<int> C;
        int i, j;
        for (i = 0, j = 0; i < m && j < n; ) {
            if(A[i] < B[j]) {
                C.push_back(A[i]);
                i++;
            } else {
                C.push_back(B[j]);
                j++;
            }
        }
        for(; i < m; i++) {
            C.push_back(A[i]);
        }
        for(; j < n; j++) {
            C.push_back(B[j]);
        }

        int vecSize = m + n;
        if (vecSize&1 == 1) {
            return C[(vecSize-1)/2];
        } else {
            return (C[(vecSize-1)/2] + C[(vecSize-1)/2+1])/2.0;
        }
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值