文章目录
一、树的概念及结构
1. 树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成的一个具有层次关系的集合;它被称为树是因为其看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
树有一个特殊的结点,称为根结点,如上图的A结点,根节点没有前驱结点;除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树;每棵子树的根结点有且只有一个前驱,可以有0个或多个后继;因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树,而是另外一种数据结构 – 图。
2. 树的相关名词
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
3. 树的表示
树结构相对线性表就比较复杂了,既要保存值,也要保存结点和结点之间的关系,要存储表示起来就比较麻烦,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单地了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* firstChild1; //存放第一个孩子结点的地址
struct Node* pNextBrother; //存放下一个兄弟结点的地址
DataType data; //结点中的数据域
};
二、二叉树的概念及结构
1. 二叉树的概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者由一个根节点加上两棵分别称为左子树和右子树的二叉树组成。
从上图可以看出,二叉树有以下特点:
1、二叉树不存在度大于2的结点;
2、二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树;
注意:任意的二叉树都是由以下几种情况复合而成的:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nEUeAJGh-1692531633318)(C:\Users\86185\AppData\Roaming\Typora\typora-user-images\image-20230818211125043.png)]
2. 特殊二叉树
满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树;也就是说,如果一个二叉树的层数为K,且结点总数是 2K-1,则它就是满二叉树。
完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的;对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树;要注意的是满二叉树是一种特殊的完全二叉树。
3. 二叉树的性质
任意层数的最大节点数: 若规定根节点的层数为1,则一棵非空二叉树的第 i 层上最多有 2i-1 个结点;
最大节点数: 若规定根节点的层数为1,则深度为 h 的二叉树的最大结点数是 2h-1;
叶子节点数和度为2的分支节点数的关系: 对任何一棵二叉树, 如果度为0的叶子结点个数为 n , 度为2的分支结点个数为 n - 1,即二叉树的叶子节点数始终比度为2的分支节点数多1;
最开始二叉树有一个节点时,叶子节点数为1,度为2的分支节点数为0;此时叶子节点数比度为2的分支节点数多1;
当我们增加一个度为1的分支节点时,叶子节点数量不变;
当我们增加一个度为2的分支节点时,同时会产生一个叶子节点;所以叶子节点数始终比度为2的分支节点数多1;
树的深度: 若规定根节点的层数为1,具有n个结点的满二叉树的深度为:h = log2(n+1)
节点数与边条数的关系: 对于任意的树都满足边的条数比节点个数少1,因为每个节点都有双亲,但是根节点没有
顺序存储中父节点和子节点的位置关系: 对于具有n个结点的完全二叉树,如果按照数组存储顺序对所有节点从0开始编号,则对于下标为 i 的结点有:
如果 i == 0,则该节点为根节点,无父节点;如果 i > 0,则其父节点的下标为:(i - 1) / 2;
其左孩子的下标为 2i + 1,如果 2i + 1 < n,说明该节点不是叶节点,存在子节点;如果 2i + 1 > n,说明该节点是叶节点,不存在子节点;
其右孩子的下标为 2i + 2,如果 2i + 2 < n,说明该节点不是叶节点,存在子节点;如果 2i + 2 > n,说明该节点是叶节点,不存在子节点;
4. 二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构;
顺序存储:就是使用数组来存储,这种存储结构一般只适合表示完全二叉树,因为其他二叉树用数组存储有空间浪费;而现实使用中只有堆才会使用数组来存储;
链式存储:就是指用链表来表示一棵二叉树,即用链表指针来指示结点之间的关系;通常链表中每个结点由三个域组成:数据域和左右指针域;左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址;链式结构又分为二叉链和三叉链,当前我们学习的一般都是二叉链。
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* lchild; // 指向当前节点左孩子
struct BinTreeNode* rchild; // 指向当前节点右孩子
BTDataType data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* parents; // 指向当前节点的双亲
struct BinTreeNode* lchild; // 指向当前节点左孩子
struct BinTreeNode* rchild; // 指向当前节点右孩子
BTDataType data; // 当前节点值域
};
三、二叉树的实现
1. 结构的定义
typedef int BTDataType;
typedef struct BinaryTreeNode
{
BTDataType val;
struct BinaryTreeNode* lchild;
struct BinaryTreeNode* rchild;
}BTNode;
2. 创建二叉树
由于二叉树不能进行增加和删除操作,所以一般都是给定一个字符串或数组,该字符串或数组中含有需要我们构建的二叉树的所有节点的值,我们通过读取字符串或数组中的内容来构建二叉树。
注意:数组中的 -1 表示空结点
BTNode* BuyBTNode(BTDataType x)
{
BTNode* root = (BTNode*)malloc(sizeof(BTNode));
if (root == NULL)
{
perror("BuyBTNode");
exit(-1);
}
root->lchild = NULL;
root->rchild = NULL;
root->val = x;
return root;
}
BTNode* CreateBinaryTree(int* nums, int* i)
{
if (nums[*i] != -1)
{
BTNode* root = BuyBTNode(nums[*i]); //先创建根结点
(*i)++;
root->lchild = CreateBinaryTree(nums, i); //再创建左子树
root->rchild = CreateBinaryTree(nums, i); //创建右子树
return root;
}
(*i)++;
return NULL;
}
3. 二叉树结点个数
根据二叉树的递归定义,二叉树结点个数就是左子树加右子树的结点个数 + 1(根节点)
int BinaryTreeSize(BTNode* root)
{
if (root == NULL)
{
return 0;
}
return BinaryTreeSize(root->lchild) + BinaryTreeSize(root->rchild) + 1;
}
4. 二叉树叶子结点个数
int BinaryTreeLeafSize(BTNode* root)
{
if (root == NULL)
{
return 0;
}
if (root->lchild == NULL && root->rchild == NULL)
{
return 1;
}
return BinaryTreeLeafSize(root->lchild) + BinaryTreeLeafSize(root->rchild);
}
5. 二叉树第k层的结点个数
int BinaryTreeLevelkSize(BTNode* root, int k)
{
assert(k > 0);
if (root == NULL)
{
return 0;
}
if (k == 1)
{
return 1;
}
return BinaryTreeLevelkSize(root->lchild, k - 1) + BinaryTreeLevelkSize(root->rchild, k - 1);
}
6. 寻找值为x的结点
BTNode* BinaryTreeFind(BTNode* root, BTDataType k)
{
if (root == NULL)
{
return NULL;
}
//先找根节点
if (root->val == k)
{
return root;
}
//去左子树找,找到就返回
BTNode* temp = BinaryTreeFind(root->lchild, k);
if (temp)
{
return temp;
}
//去右子树找,找到就返回
temp = BinaryTreeFind(root->rchild, k);
if (temp)
{
return temp;
}
return NULL;
}
7. 前序遍历
先访问根节点,再访问左子树,最后访问右子树;
void PreOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
printf("%d ", root->val);
PreOrder(root->lchild);
PreOrder(root->rchild);
}
8. 中序遍历
先访问左子树,再访问根节点,最后访问右子树;
void InOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
InOrder(root->lchild);
printf("%d ", root->val);
InOrder(root->rchild);
}
9. 后序遍历
先访问左子树,再访问右子树,最后访问根节点;
void PostOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
PostOrder(root->lchild);
PostOrder(root->rchild);
printf("%d ", root->val);
}
10. 层序遍历
按照二叉树的逻辑结构,先访问第一层的所有节点,再访问第二层的所有节点,依次向下访问。
区别其他三种遍历方式,层序遍历采用的是非递归,其具体思路是:
利用一个队列来存储二叉树节点的地址,先让根节点入队列,如果队列不为空,队头结点出队,然后让队头节点的左右孩子入队列 (如果没有左右孩子就不入),这样就使得当一层的节点全部出队列时,下一层的节点刚好全部入队列,最后队列为空时,二叉树的节点就全部访问完了。
注意:1、由于我们需要队列来存储二叉树节点的地址,所以这里我们需要把我们之前写的队列项目中的源文件Queue.h
和 Queue.c
添加到当前项目中;2、同时,因为队列会存储二叉树节点的地址,所以我们需要将二叉树节点的结构体定义在Queue.h
中声明才能使用
void LevelOrder(BTNode* root)
{
if (root == NULL)
{
return;
}
//将结点的地址存储在队列中,取出一个结点的同时将该结点的子结点入队
Queue Q;
InitQueue(&Q);
EnQueue(&Q, root);
while (!IsEmptyQueue(&Q))
{
BTNode* temp = QueueFront(&Q);
printf("%d ", temp->val);
DeQueue(&Q);
if (temp->lchild)
{
EnQueue(&Q, temp->lchild);
}
if (temp->rchild)
{
EnQueue(&Q, temp->rchild);
}
}
printf("\n");
DestroyQueue(&Q);
}
11. 判断完全二叉树
我们知道,完全二叉树的前 h - 1 层都是满二叉树,最后一层不一定是满二叉树,当最后一层遇到空节点之后,后面就不会再出现节点,否则,就是非完全二叉树;
根据上面这个性质,我们可以利用层序遍历来判断二叉树是否为完全二叉树:对二叉树进行层序遍历,与普通层序遍历不同的是,当节点的孩子为空时,我们仍然入队列;当队顶的元素为空时,停止循环,检查队列中剩余的元素,如果剩余元素中存在非空节点,则不是完全二叉树,否则就是完全二叉树。
bool CompleteBinaryTree(BTNode* root)
{
if (root == NULL)
{
return false;
}
Queue Q;
InitQueue(&Q);
EnQueue(&Q, root);
BTNode* temp = root;
while (temp) //当队顶的元素为空时,停止循环
{
DeQueue(&Q);
//当节点的孩子为空时,仍然入队列
EnQueue(&Q, temp->lchild);
EnQueue(&Q, temp->rchild);
temp = QueueFront(&Q);
}
while (!IsEmptyQueue(&Q))
{
if (QueueFront(&Q)) //剩余元素中存在非空节点
{
DestroyQueue(&Q);
return false; //不是完全二叉树
}
DeQueue(&Q);
}
DestroyQueue(&Q);
return true;
}
12. 销毁二叉树
void DestroyBinaryTree(BTNode* root)
{
if (root == NULL)
{
return;
}
//使用后序遍历销毁二叉树
DestroyBinaryTree(root->lchild);
DestroyBinaryTree(root->rchild);
free(root);
}
四、完整代码
码云地址: