《动手学深度学习》Task08:文本分类;数据增强;模型微调

Task08:文本分类;数据增强;模型微调

1.文本分类

文本情感分类

文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。

同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。后续内容将从以下几个方面展开:

文本情感分类数据集
使用循环神经网络进行情感分类
使用卷积神经网络进行情感分类

我们使用斯坦福的IMDb数据集(Stanford’s Large Movie Review Dataset)作为文本情感分类的数据集。

读取数据集

def read_imdb(folder='train', data_root="/home/kesci/input/IMDB2578/aclImdb_v1/aclImdb"):
    data = []
    for label in ['pos', 'neg']:
        folder_name = os.path.join(data_root, folder, label)
        for file in tqdm(os.listdir(folder_name)):
            with open(os.path.join(folder_name, file), 'rb') as f:
                review = f.read().decode('utf-8').replace('\n', '').lower()
                data.append([review, 1 if label == 'pos' else 0])
    random.shuffle(data)
    return data


DATA_ROOT = "/home/kesci/input/IMDB2578/aclImdb_v1/"
data_root = os.path.join(DATA_ROOT, "aclImdb")
train_data, test_data = read_imdb('train', data_root), read_imdb('test', data_root)


#数据预处理

def get_tokenized_imdb(data):
    '''
    @params:
        data: 数据的列表,列表中的每个元素为 [文本字符串,0/1标签] 二元组
    @return: 切分词后的文本的列表,列表中的每个元素为切分后的词序列
    '''
    def tokenizer(text):
        return [tok.lower() for tok in text.split(' ')]
    
    return [tokenizer(review) for review, _ in data]

def get_vocab_imdb(data):
    '''
    @params:
        data: 同上
    @return: 数据集上的词典,Vocab 的实例(freqs, stoi, itos)
    '''
    tokenized_data = get_tokenized_imdb(data)
    counter = collections.Counter([tk for st in tokenized_data for tk in st])
    return Vocab.Vocab(counter, min_freq=5)

vocab = get_vocab_imdb(train_data)
print('# words in vocab:', len(vocab))


def preprocess_imdb(data, vocab):
    '''
    @params:
        data: 同上,原始的读入数据
        vocab: 训练集上生成的词典
    @return:
        features: 单词下标序列,形状为 (n, max_l) 的整数张量
        labels: 情感标签,形状为 (n,) 的0/1整数张量
    '''
    max_l = 500  # 将每条评论通过截断或者补0,使得长度变成500

    def pad(x):
        return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))

    tokenized_data = get_tokenized_imdb(data)
    features = torch.tensor([pad([vocab.stoi[word] for word in words]) for words in tokenized_data])
    labels = torch.tensor([score for _, score in data])
    return features, labels

#利用 torch.utils.data.TensorDataset,可以创建 PyTorch 格式的数据集,从而创建数据迭代器。
train_set = Data.TensorDataset(*preprocess_imdb(train_data, vocab))
test_set = Data.TensorDataset(*preprocess_imdb(test_data, vocab))

# 上面的代码等价于下面的注释代码
# train_features, train_labels = preprocess_imdb(train_data, vocab)
# test_features, test_labels = preprocess_imdb(test_data, vocab)
# train_set = Data.TensorDataset(train_features, train_labels)
# test_set = Data.TensorDataset(test_features, test_labels)

# len(train_set) = features.shape[0] or labels.shape[0]
# train_set[index] = (features[index], labels[index])

batch_size = 64
train_iter = Data.DataLoader(train_set, batch_size, shuffle=True)
test_iter = Data.DataLoader(test_set, batch_size)

for X, y in train_iter:
    print('X', X.shape, 'y', y.shape)
    break
print('#batches:', len(train_iter))
  • 使用卷积神经网络

一维卷积层
在这里插入图片描述
多输入通道的一维互相关运算也与多输入通道的二维互相关运算类似:在每个通道上,将核与相应的输入做一维互相关运算,并将通道之间的结果相加得到输出结果。下图展示了含 3 个输入通道的一维互相关运算,其中阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0×1+1×2+1×3+2×4+2×(−1)+3×(−3)=2。

在这里插入图片描述

def corr1d_multi_in(X, K):
    # 首先沿着X和K的通道维遍历并计算一维互相关结果。然后将所有结果堆叠起来沿第0维累加
    return torch.stack([corr1d(x, k) for x, k in zip(X, K)]).sum(dim=0)
    # [corr1d(X[i], K[i]) for i in range(X.shape[0])]

X = torch.tensor([[0, 1, 2, 3, 4, 5, 6],
              [1, 2, 3, 4, 5, 6, 7],
              [2, 3, 4, 5, 6, 7, 8]])
K = torch.tensor([[1, 2], [3, 4], [-1, -3]])
print(corr1d_multi_in(X, K))
tensor([ 2.,  8., 14., 20., 26., 32.])
  • 时序最大池化层

在这里插入图片描述

class GlobalMaxPool1d(nn.Module):
    def __init__(self):
        super(GlobalMaxPool1d, self).__init__()
    def forward(self, x):
        '''
        @params:
            x: 输入,形状为 (batch_size, n_channels, seq_len) 的张量
        @return: 时序最大池化后的结果,形状为 (batch_size, n_channels, 1) 的张量
        '''
        return F.max_pool1d(x, kernel_size=x.shape[2]) # kenerl_size=seq_len
  • TextCNN 模型
    在这里插入图片描述
class TextCNN(nn.Module):
    def __init__(self, vocab, embed_size, kernel_sizes, num_channels):
        '''
        @params:
            vocab: 在数据集上创建的词典,用于获取词典大小
            embed_size: 嵌入维度大小
            kernel_sizes: 卷积核大小列表
            num_channels: 卷积通道数列表
        '''
        super(TextCNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size) # 参与训练的嵌入层
        self.constant_embedding = nn.Embedding(len(vocab), embed_size) # 不参与训练的嵌入层
        
        self.pool = GlobalMaxPool1d() # 时序最大池化层没有权重,所以可以共用一个实例
        self.convs = nn.ModuleList()  # 创建多个一维卷积层
        for c, k in zip(num_channels, kernel_sizes):
            self.convs.append(nn.Conv1d(in_channels = 2*embed_size, 
                                        out_channels = c, 
                                        kernel_size = k))
            
        self.decoder = nn.Linear(sum(num_channels), 2)
        self.dropout = nn.Dropout(0.5) # 丢弃层用于防止过拟合

    def forward(self, inputs):
        '''
        @params:
            inputs: 词语下标序列,形状为 (batch_size, seq_len) 的整数张量
        @return:
            outputs: 对文本情感的预测,形状为 (batch_size, 2) 的张量
        '''
        embeddings = torch.cat((
            self.embedding(inputs), 
            self.constant_embedding(inputs)), dim=2) # (batch_size, seq_len, 2*embed_size)
        # 根据一维卷积层要求的输入格式,需要将张量进行转置
        embeddings = embeddings.permute(0, 2, 1) # (batch_size, 2*embed_size, seq_len)
        
        encoding = torch.cat([
            self.pool(F.relu(conv(embeddings))).squeeze(-1) for conv in self.convs], dim=1)
        # encoding = []
        # for conv in self.convs:
        #     out = conv(embeddings) # (batch_size, out_channels, seq_len-kernel_size+1)
        #     out = self.pool(F.relu(out)) # (batch_size, out_channels, 1)
        #     encoding.append(out.squeeze(-1)) # (batch_size, out_channels)
        # encoding = torch.cat(encoding) # (batch_size, out_channels_sum)
        
        # 应用丢弃法后使用全连接层得到输出
        outputs = self.decoder(self.dropout(encoding))
        return outputs

embed_size, kernel_sizes, nums_channels = 100, [3, 4, 5], [100, 100, 100]
net = TextCNN(vocab, embed_size, kernel_sizes, nums_channels)

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()
train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

2.数据增强

  • 图像增广
    在5.6节(深度卷积神经网络)里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。可以说,在当年AlexNet的成功中,图像增广技术功不可没。本节我们将讨论这个在计算机视觉里被广泛使用的技术。
import os
os.listdir("/home/kesci/input/img2083/")

%matplotlib inline
import os
import time
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
import sys
from PIL import Image

sys.path.append("/home/kesci/input/")
#置当前使用的GPU设备仅为0号设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"   

import d2lzh1981 as d2l

# 定义device,是否使用GPU,依据计算机配置自动会选择
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(torch.__version__)
print(device)

d2l.set_figsize()
img = Image.open('/home/kesci/input/img2083/img/cat1.jpg')
d2l.plt.imshow(img)

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def show_images(imgs, num_rows, num_cols, scale=2):
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    for i in range(num_rows):
        for j in range(num_cols):
            axes[i][j].imshow(imgs[i * num_cols + j])
            axes[i][j].axes.get_xaxis().set_visible(False)
            axes[i][j].axes.get_yaxis().set_visible(False)
    return axes
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    show_images(Y, num_rows, num_cols, scale)

apply(img, torchvision.transforms.RandomHorizontalFlip()) #水平翻转
apply(img, torchvision.transforms.RandomVerticalFlip())#竖直翻转
shape_aug = torchvision.transforms.RandomResizedCrop(200, scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)#裁剪

apply(img, torchvision.transforms.ColorJitter(brightness=0.5, contrast=0, saturation=0, hue=0))#变换颜色

apply(img, torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0.5))#变换色调

apply(img, torchvision.transforms.ColorJitter(brightness=0, contrast=0.5, saturation=0, hue=0))#变换对比度

#叠加
augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)



3.模型微调

在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体。然而,我们平常接触到数据集的规模通常在这两者之间。

假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1,000张不同角度的图像,然后在收集到的图像数据集上训练一个分类模型。这个椅子数据集虽然可能比Fashion-MNIST数据集要庞大,但样本数仍然不及ImageNet数据集中样本数的十分之一。这可能会导致适用于ImageNet数据集的复杂模型在这个椅子数据集上过拟合。同时,因为数据量有限,最终训练得到的模型的精度也可能达不到实用的要求。

为了应对上述问题,一个显而易见的解决办法是收集更多的数据。然而,收集和标注数据会花费大量的时间和资金。例如,为了收集ImageNet数据集,研究人员花费了数百万美元的研究经费。虽然目前的数据采集成本已降低了不少,但其成本仍然不可忽略。

另外一种解决办法是应用迁移学习(transfer learning),将从源数据集学到的知识迁移到目标数据集上。例如,虽然ImageNet数据集的图像大多跟椅子无关,但在该数据集上训练的模型可以抽取较通用的图像特征,从而能够帮助识别边缘、纹理、形状和物体组成等。这些类似的特征对于识别椅子也可能同样有效。

本节我们介绍迁移学习中的一种常用技术:微调(fine tuning)。如图9.1所示,微调由以下4步构成。

1.在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
2.创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
3。为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
4.在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。
在这里插入图片描述

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_augs = transforms.Compose([
        transforms.RandomResizedCrop(size=224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize
    ])

test_augs = transforms.Compose([
        transforms.Resize(size=256),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        normalize
    ])

pretrained_net = models.resnet18(pretrained=False)
pretrained_net.load_state_dict(torch.load('/home/kesci/input/resnet185352/resnet18-5c106cde.pth'))

pretrained_net.fc = nn.Linear(512, 2)
print(pretrained_net.fc)

output_params = list(map(id, pretrained_net.fc.parameters()))
feature_params = filter(lambda p: id(p) not in output_params, pretrained_net.parameters())

lr = 0.01
optimizer = optim.SGD([{'params': feature_params},
                       {'params': pretrained_net.fc.parameters(), 'lr': lr * 10}],
                       lr=lr, weight_decay=0.001)


def train_fine_tuning(net, optimizer, batch_size=128, num_epochs=5):
    train_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/train'), transform=train_augs),
                            batch_size, shuffle=True)
    test_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/test'), transform=test_augs),
                           batch_size)
    loss = torch.nn.CrossEntropyLoss()
    d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

train_fine_tuning(pretrained_net, optimizer)

效果对比:
在这里插入图片描述
参考文献:
https://www.kesci.com/org/boyuai/project/5e49e76980da780037baf3e5
https://www.kesci.com/org/boyuai/project/5e4a762680da780037bc326d
https://www.kesci.com/org/boyuai/project/5e4a765080da780037bc32b7

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值