2021年CCPC河南省赛题解 1008.小y爱数数

题目链接
http://acm.zzuli.edu.cn/problem.php?id=2832
思路
在这里插入图片描述
      图片是官方题解,官方题解省略了很多说明和细节,我来描述一下,先看第一句话,我们怎么求解这个 f ( n ) f(n) f(n),我们可以很明显看出,应该是通过枚举x来得到个数,最后将所有x的取值的结果求和即为个数。
在这里插入图片描述
      易得公式即为 ∑ i = 1 n \sum_{i=1}^{n} i=1n ⌊ n / i ⌋ \lfloor n/i \rfloor n/i,通过题解我们得知我们要预处理这个公式1~1e5的所有值,那么哪怕使用数论分块一个个进行求解,时间复杂度也不尽人意,我们观察这个函数,可以得到,这个函数值实际上是区间 [ 1 , n ] [1, n] [1,n]所有数的约数个数的贡献之和,所以只要我们得到区间 [ 1 , n ] [1, n] [1,n]上每个数的约数个数再做一遍前缀和,就可以得到 f ( n ) f(n) f(n) [ 1 , 1 e 5 ] [1, 1e5] [1,1e5]上的所有值。线性筛求解约数个数是参照这个链接
      解决了 f ( n ) f(n) f(n)函数的求解和预处理,我们再回归本题,看官方题解第二行,在预处理这个函数值之后,我们 f ( n − k ) f(n-k) f(nk)的值就是 ∑ i = 1 n − k \sum_{i=1}^{n-k} i=1nk ⌊ ( n − k ) / i ⌋ \lfloor (n-k)/i \rfloor (nk)/i,我们将所有这些取值对应的x, y的组合中的y加一个k就能保证 y % x = = k y\%x==k y%x==k并且 y < = n y<=n y<=n,但是这并不是最终答案,因为既然 y % x = = k y\%x==k y%x==k,那么一定有 x > k x>k x>k,所以就有了官方题解上面的减去那个求和式。但是这也并不是最终答案,题解还是省略了一个值,在 k ! = 0 k!=0 k!=0的情况下,那么还有 y < x y<x y<x的情况,这种情况对应的组合只有一种情况, y = = k & & k < x < = n y==k\&\&k<x<=n y==k&&k<x<=n,所有答案还要再加上一个 n − k n-k nk k = = 0 k == 0 k==0就不用加了,因为y大于0)。
关于最后求解逆元,使用费马小定理或扩欧求解完后乘一个a即可,题目保证n不是23333的倍数,就是注意如果用费马小定理求解逆元,快速幂底数要先取模,底数可能达到1e10级别,不取模直接放进快速幂会爆long long。

费马小定理求解逆元代码

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse-lm")
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long int
#define mod 23333
#define inf (2e18)
#define eps 1e-4
#define lson (p << 1)
#define rson ((p << 1) | 1)
using namespace std;
 
const int N = 1e5 + 2, M = 510;
 
inline ll read()
{
    ll x = 0;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    return x;
}
 
ll qmi(ll a, ll b, ll p)
{
    ll res = 1;
    while (b)
    {
        if (b & 1)
            res = res * a % p;
        b >>= 1;
        a = a * a % p;
    }
    return res;
}
 
ll prime[N], num[N], f[N], cnt;
bool vis[N];
 
void init()
{
    f[1] = 1;
    for (ll i = 2; i < N; i++)
    {
        if (!vis[i])
        {
            prime[++cnt] = i;
            num[i] = 1;
            f[i] = 2;
        }
        for (ll j = 1; j <= cnt && i * prime[j] < N; j++)
        {
            vis[i * prime[j]] = 1;
            if (i % prime[j] == 0)
            {
                num[i * prime[j]] = 1 + num[i];
                f[i * prime[j]] = f[i] / (num[i] + 1) * (num[i] + 2);
                break;
            }
            num[i * prime[j]] = 1;
            f[i * prime[j]] = f[i] * f[prime[j]];
        }
    }
    for (ll i = 1; i < N; i++)
        f[i] += f[i - 1];
}
 
int main()
{
    init();
    ll res = 0;
    ll _;
    _ = read();
    while (_--)
    {
        ll n, k;
        n = read(), k = read();
        if (n <= k)
            continue;
        ll a = f[n - k];
        if (k > 0)
            a += (n - k);
        ll b = n * n;
        for (ll i = 1; i <= k; i++)
            a = a - ((n - k) / i);
        ll z = __gcd(a, b);
        a /= z, b /= z;
        ll x, y;
        x = qmi(b % mod, mod - 2, mod);
        x = x * a % mod;
        // cout << x << '\n';
        res ^= x;
    }
    cout << res;
 
    return 0;
}

扩欧求解逆元代码

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse-lm")
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long int
#define mod 23333
#define inf (2e18)
#define eps 1e-4
#define lson (p << 1)
#define rson ((p << 1) | 1)
using namespace std;
 
const int N = 1e5 + 2, M = 510;
 
inline ll read()
{
    ll x = 0;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    return x;
}
 
ll qmi(ll a, ll b, ll p)
{
    ll res = 1;
    while (b)
    {
        if (b & 1)
            res = res * a % p;
        b >>= 1;
        a = a * a % p;
    }
    return res;
}
 
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll d = exgcd(b, a % b, x, y);
    ll z = x;
    x = y;
    y = z - (a / b) * y;
    return d;
}
 
ll prime[N], num[N], f[N], cnt;
bool vis[N];
 
void init()
{
    f[1] = 1;
    for (ll i = 2; i < N; i++)
    {
        if (!vis[i])
        {
            prime[++cnt] = i;
            num[i] = 1;
            f[i] = 2;
        }
        for (ll j = 1; j <= cnt && i * prime[j] < N; j++)
        {
            vis[i * prime[j]] = 1;
            if (i % prime[j] == 0)
            {
                num[i * prime[j]] = 1 + num[i];
                f[i * prime[j]] = f[i] / (num[i] + 1) * (num[i] + 2);
                break;
            }
            num[i * prime[j]] = 1;
            f[i * prime[j]] = f[i] * f[prime[j]];
        }
    }
    for (ll i = 1; i < N; i++)
        f[i] += f[i - 1];
}
 
int main()
{
    init();
    ll res = 0;
    ll _;
    _ = read();
    while (_--)
    {
        ll n, k;
        n = read(), k = read();
        if (n <= k)
            continue;
        ll a = f[n - k];
        if (k > 0)
            a += (n - k);
        ll b = n * n;
        for (ll i = 1; i <= k; i++)
            a = a - ((n - k) / i);
        ll z = __gcd(a, b);
        a /= z, b /= z;
        ll x, y;
        exgcd(b, mod, x, y);
        x = (x % mod + mod) % mod;
        x = x * a % mod;
        // cout << x << '\n';
        res ^= x;
    }
    cout << res;
 
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值