拉格朗日插值法

当 X 的取值不一定是 1-n 连续的时候,我们只能 O(n²) 地插出结果

洛谷 P4781

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2e3+10;
const int mod=998244353;
int x[N],y[N];
ll quick_pow(ll a,ll b) {
	ll ans=1;
	while(b > 0) {
		if(b & 1) {
			ans = ans * a % mod;
		}
		a = a * a % mod;
		b >>= 1;
	}
	return ans;
}
ll lagrange(int n, int *x, int *y, int xi) {// x,y分别是对应的值对 ,xi 表示我们现在要求 f(xi)
	ll ans = 0;
	for (int i = 1; i <= n; i++) {
		ll s1 = 1, s2 = 1;
		for (int j = 1; j <= n; j++)
			if (i != j) {
				s1 = 1ll*s1*(xi-x[j]+mod)%mod;
				s2 = 1ll*s2*(x[i]-x[j]+mod)%mod;
			}
		ans = (1ll*ans+1ll*y[i]*s1%mod*quick_pow(s2, mod-2)%mod)%mod;
	}//我也不知道为什么这里能直接费马小定理求逆元……
	return (ans+mod)%mod;
}
int main() {
	int t,n;
	scanf("%d%d",&t,&n);
	for(int i=1; i<=t; i++) {
		scanf("%d%d",&x[i],&y[i]);
	}
	printf("%lld\n",lagrange(t,x,y,n));
	return 0;
}

博主智障,忘记mod是一个质数,所有数都与质数互质……

当 X 的取值确定是从1-n 连续的时候,我们可以对式子进行优化,之后 O(n) 即可求出答案

2019 ICPC 南昌 B

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int maxn=1005;
const int MOD=9999991;

int T,n,m;
ll a[maxn],inv[MOD+5],finv[maxn];
ll sum[maxn],ans;

ll qpow(ll a,ll b) {
	ll res=1;
	while(b) {
		if(b&1) res=res*a%MOD;
		a=a*a%MOD;
		b>>=1;
	}
	return res;
}

void init() {//inv是分母所需要的逆元,finv 
	inv[1]=1;
	for(int i=2; i<=MOD+5; ++i)//线性求1-MOD的逆元 
		inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
	finv[0]=1;
	for(int i=1; i<=1000; ++i)//递推出阶乘的逆元 
		finv[i]=finv[i-1]*inv[i]%MOD;
}

ll cal(ll x,ll *a,ll up) { //X未必是0-n才行,只要x连续,就可以利用此方法进行优化 
	ll res=0;
	ll p=1;
	for(ll i=0; i<=up; ++i)
		p=p*(x-i)%MOD;
	for(ll i=0; i<=up; ++i) {
		int f=(up-i)&1?-1:1;
		res=(res+MOD+a[i]*f*p%MOD*inv[x-i]%MOD*finv[i]%MOD*finv[up-i]%MOD)%MOD;
	}
	return res;
}

int main() {
	init();
	scanf("%d",&T);
	while(T--) {
		scanf("%d%d",&n,&m);
		for(int i=0; i<=n; ++i) {
			scanf("%lld",&a[i]);
			a[i]%=MOD;
		}
		a[n+1]=cal(n+1,a,n);
		sum[0]=a[0];
		for(int i=1; i<=n+1; ++i)
			sum[i]=(sum[i-1]+a[i])%MOD;
		while(m--) {
			int l,r;
			scanf("%d%d",&l,&r);
			if(r<=n+1) {
				printf("%lld\n",(sum[r]-sum[l-1]+MOD)%MOD);
				continue;
			}
			if(l-1<=n+1)
				ans=(cal(r,sum,n+1)-sum[l-1]+MOD)%MOD;
			else
				ans=(cal(r,sum,n+1)-cal(l-1,sum,n+1)+MOD)%MOD;
			printf("%lld\n",ans);
		}
	}
	return 0;
}

CF622F : 该问题是一个经典问题,自然幂级数的前缀和

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int maxn=1e6+10;
const int MOD=1e9+7;

int n,m;
ll a[maxn+100],inv[maxn+100],finv[maxn+100];

ll qpow(ll a,ll b) {
	ll res=1;
	while(b) {
		if(b&1) res=res*a%MOD;
		a=a*a%MOD;
		b>>=1;
	}
	return res;
}

void init() {//inv是分母所需要的逆元,finv
	inv[1]=1;
	for(int i=2; i<=maxn; ++i)//线性求1-MOD的逆元
		inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
	finv[0]=1;
	for(int i=1; i<=maxn; ++i)//递推出阶乘的逆元
		finv[i]=finv[i-1]*inv[i]%MOD;
}

ll cal(ll x,ll *a,ll up) { //X未必是0-n才行,只要x连续,就可以利用此方法进行优化 
	ll res=0;
	ll p=1;
	for(ll i=1; i<=up; ++i)//i的初识值是x的起点,up即为x的终点 
		p=p*(x-i)%MOD;
	for(ll i=1; i<=up; ++i) {
		int f=(up-i)&1?-1:1;
		//res=(res+MOD+a[i]*f*p%MOD*inv[x-i]%MOD*finv[i-1]%MOD*finv[up-i]%MOD)%MOD; //inv[x-i]有可能会特别大,所以我们应该无法用打表获取到,应该直接快速幂求逆元 
		res=(res+MOD+a[i]*f*p%MOD*qpow(x-i,MOD-2)%MOD*finv[i-1]%MOD*finv[up-i]%MOD)%MOD;//注意x是从几开始的,x的起点终点不同时,需要的前缀积和后缀积也不尽相同 
		//第一个finv代表前缀积,x的起点是多少,就是 i-几 ,第二个finv代表后缀积,x的终点是多少,就是  几-i 
		//cout<<i<<" "<<p*inv[x-i]<<" "<<finv[i-1]<<" "<<finv[up-i]<<endl; 
	}
	return res;
}

int main() {
	init();
	scanf("%d%d",&n,&m);
	a[0]=0;
	for(int i=1; i<=m+2; ++i) {
		a[i]=a[i-1]+qpow(i,m);
		a[i]%=MOD;
	}
	if(n<=m+2) {
		printf("%lld\n",a[n]);
	} else {
		printf("%lld\n",cal(n,a,m+2));
	}
	return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值