堆的向上和向下调整

堆的物理结构和逻辑结构是什么?

堆如何插入数据和删除数据?为什么?

向上调整和向下调整的要求是啥? 

文中不理解的可以先看堆的代码和基础知识-CSDN博客

也欢迎评论区一起讨论

1.堆的物理结构和逻辑结构 

我们的堆是用数组实现的

因此堆的物理结构是数组

但是堆的逻辑结构确是二叉树

2.插入数据和向上调整

但是我们再思考一个问题就是,当我们有一个堆的时候,怎么是插入数据呢?

以上面画的那个图为例,我们要插入一个 数据,并且还要保持堆的特性(父节点大于子节点)

我们该如何调整呢? 

但是我们要首先要明确一个点就是除了我们插入数据,其他数据,其他数据成堆

这个就是向上调整的使用条件 

设我们要插入数据,只能在物理结构上插入到数组的最后一个,再对插入的数据进行调整

也称为向上调整

这样的好处是我们不会对前面的数据产生影响(前面的数据成堆)

然后我们要进行调整了

这个地方假设我们插入的是99,明显就需要调整,但是只有这个数据是有问题的,因此我们只用对这个数据和它的祖先进行遍历调整就可以了

那么遍历什么时候停止呢?

1.就是如上图,我把插入节点的祖宗节点全部遍历完(这个就是上面那个图停止的原因)

2.就是当插入的数据符合堆的要求(父节点大于子节点)

那么我们就可以开始写代码了

首先就是子节点和父节点的关系是什么呢?

所以

父节点=(子节点-1)/2

我们就可以开始写向上调整的代码了

// 除了child这个位置,前面数据构成堆
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	//while (parent >= 0)
	while (child > 0)//判断遍历是否结束
	{
		if (a[child] > a[parent])//不满足堆的要求,进行调整
		{
			Swap(&a[child], &a[parent]);//交换父子节点
			child = parent;
			parent = (child - 1) / 2;
		}
		else//满足,调整结束
		{
			break;
		}
	}
}

我们思考一下就是如果改成while(parent>=0)是否也可以

答案是未必

当child等于0的时候parent=(child-1)/2=-1/2=0;

这个时候我们遍历结束但无法跳出while循环了

我们向上调整写完了,那么我们就可以接着写如何插入数据了,那就非常easy了

void HeapPush(HP* php, HPDataType x)
{
	assert(php);

	if (php->size == php->capacity)
	{
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * php->capacity * 2);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity *= 2;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}

 上面大部分代码基本都是老朋友了,如果不熟那就先去复习一下前面的链表和顺序表,这个地方我解释一下,这个地方向上调整这个函数为啥要传php->size-1而不是php->size

我们先来看向上调整函数里面我们交换的是什么?

Swap(&a[child], &a[parent]);

交换的是两个数组的地址啊,数组的下标是从0开始的,但是size代表的是节点个数,是从1开始的啊,所以这个地方child的下标就是size-1了

3.删除节点删什么节点

这个地方我们以大端为例,小端同理

我们接下来再看怎么删除节点,我们先来想想我们删除节点是删除叶节点还是端节点?

当然肯定是端节点啊,为什么啊?

首先我们要思考一个问题,就是我们的堆是用来干嘛的?

其中很重要一个作用是用来排序的啊!

那么我们堆满足的性质是什么?

是所有的父节点都大于子节点

但是我们能不能保证兄弟节点谁大谁小啊,这个是未知的

但是如果我们要排序我们去删除叶节点,我们怎么确定这个叶节点是最大的节点啊(你怎么知道它的兄弟节点一定比它大啊?)

这样我们无法达到排序的功能

但是我们的端节点,它没有兄弟节点,只有子孙节点,这也就意味着它是所有数里面最大的,我把端点删了,得到的下一个端点不就是第二大的数吗。

以此类推,我们就可以得到第三大,第四大等等的数了吗?不就可以实现排序了吗?

4.删除节点和向下调整

但是这个地方我们要记住一个点,后面会用上,就是我们把端点删除后,它的左右子孙端点会形成新的堆

这个也就是向下调整的使用前提

那我们思考一下,我们删除了端点,接下来改怎么调整呢?

端点删除之后的左右子孙端点会形成新的堆,那我们最好就不要破坏这个结构,

就不要直接把这两个端点最大的那个设为新的端点,因为这样有可能会导致后面的数据不构成堆,会非常麻烦,我们就直接把最后一个节点和端点交换,

然后再对端点进行free就完成删除了,那么删除后,我们还要对这个堆进行调整,这个时候就是向下调整了

向下调整这个地方我们以大堆为例子

我们把端点和叶节点交换位置后, 我们要调整,要保证父节点大于子节点,

因为我们只用把交换的那个数据   从上到下   和  其子节点最大的值   进行比较,如果比它们小,那就交换位置

,遍历一遍就可以了

停下来有两个条件

1.第一就是遍历完了,和叶节点比较完了

2.第二就是满足这个数据大于它的两个子节点最大的一个了(上面画的图属于这种)

因此我们就可以写向下调整的代码了

// 左右子树都是大堆/小堆
void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		// 选出左右孩子中大的那一个
		if (child + 1 < n && a[child + 1] < a[child])
		{
			++child;
		}

		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

同样,删除端点的代码也可以写了

oid HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));

	// 删除数据
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);
}

 这个地方的size-1而不是size的原因见上文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值