kuangbin专题九 POJ1236 Network of Schools(Tarjan模板题)

题意:
一些学校连成了网络, 在学校之间存在某个协议:每个学校都维护一张传送表,表明他们要负责将收到的软件传送到表中的所有学校。如果A在B的表中,那么B不一定在A的表中。
现在的任务就是,给出所有学校及他们维护的表,问题(1):如果所有学校都要被传送到,那么需要几份软件;问题(2):如果只传送一份软件,那么需要添加几条边?
题解:
这道题就是求学校之间连成网络的强联通分量,我一开始的想法是用超级源点+朱刘算法求出到底是否联通,联通就输出1,后来发现如果不联通的话就超级麻烦了,看到题解才知道这道题是强连通。那么第一问怎么求呢?如果整个图就是强连通的话就是输出1了,但是不是的话,怎么做呢?只要想他们缩点之后要怎么联通的情况就好了,因为Tarjan算法的特点就是可以把一个强连通分量(强连通分量里面的点相互能到达)缩成点。缩点之后查看一下有几个点的入度为0就是第一问的答案了,为什么?因为如果你入度为0的话就可以知道没有点连接它了。那第二问呢?怎么求呢?我们可以继续从缩点入手,计算他们的入度为0和出度为0的点分别有多少个,然后找出最大那个就可以了。(不理解的自己去画一下图就知道了。)
这道题刚好可以作为我以后的模板来练。
Tarjan的时间复杂度:邻接矩阵存储图,时间复杂度为O(N^2)。因为边的处理就需要N^2的时间,如果改有邻接表存储,算法时间复杂度降为O(M+N)。
模板1参考这位大佬的:
http://blog.csdn.net/huzhengnan/article/details/7787595
模板2(这位大佬的代码简洁啊,但是可能看代码没有代码1的理解好,但是这位大佬解释的很好。)参考这位大佬的:
http://blog.csdn.net/mengxiang000000/article/details/51672725
模板1:

#include<stdio.h>
#include<string.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=105;
int map[MAXN][MAXN];
int low[MAXN];
int dfn[MAXN];
int stack[MAXN],head;
int instack[MAXN];
int belong[MAXN];
int in[MAXN],out[MAXN];
int index,sig;
int n,m; 
void init()
{
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
    memset(belong,0,sizeof(belong));
    memset(map,0,sizeof(map));
    memset(dfn,-1,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(stack,0,sizeof(stack));
    memset(instack,0,sizeof(stack));
    index=1;
    sig=0;
    head=0;
}
void tarjan(int u)
{
    low[u]=dfn[u]=index; // 刚搜到一个节点时low = dfn
    index++;
    stack[++head]=u;// 将该节点入栈 
    instack[u]=1;// 将入栈标记设置为1
    for(int i=1;i<=n;i++)
    {
        if(!map[u][i])// 如果两点之间没有边就不用管它了 
        continue;
        if(dfn[i]==-1)
        {
            tarjan(i);// 类似dfs般搜索这个节点所能到达的节点。 
            low[u]=min(low[u],low[i]);// 回溯的时候改变当前节点的low值
        }
        else if(instack[i])// 如果搜索到的节点已经被搜索过(即存在回边)而且现在在栈中 
        {
            low[u]=min(low[u],dfn[i]);// 更新当前节点的low值,这里的意思是两个节点之间有一条可达边,而前面节点已经在栈中,那么后面的节点就可能和前面的节点在一个联通分量中  
        }
    }
    if(low[u]==dfn[u])// 最终退回来的时候 low[] == dfn[] ,没有节点能将根节点更新,那说明这个点是个关键节点 
    {                // low == dfn 的节点必然就是根节点   
        int temp;
        sig++;
        while(1)// 一直出栈到此节点, 这些元素是一个强联通分量 
        {
            temp=stack[head--];// 弹出栈元素 
            belong[temp]=sig; // 为了方便计算,将强联通分量进行标记
            instack[temp]=0;// 将栈内标记置为0
    //      printf("%d\n",temp);
            if(temp==u)// 一直弹到u出现为止 
            break;
        } 
    //  printf("~~~~~~~~~~~~~~~~~~~~~~~\n"); 
    }
}
void solve()
{
    for(int i=1;i<=n;i++)
    {
        if(dfn[i]==-1)// 如果某点没被访问过,则对其进行tarjan
        tarjan(i);// tarjan的成果是得到了一个belong数组,记录每个节点分别属于哪个强联通分量 
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(map[i][j]&&belong[i]!=belong[j])
            {
                out[belong[i]]++;
                in[belong[j]]++;
            }
        }
    }
    int t1=0,t2=0;
    for(int i=1;i<=sig;i++)
    {
        if(in[i]==0)
        t1++;
        if(out[i]==0)
        t2++;
    //  printf("%d  %d   %d\n",i,in[i],out[i]);
    }
    if(sig==1)
    printf("1\n0\n");
    else
    printf("%d\n%d\n", t1, max(t1, t2));
}
int main()
{
    while(~scanf("%d",&n))
    {
        init();
        for(int i=1;i<=n;i++)
        {
            while(1)
            {
                int v;
                scanf("%d",&v);
                if(v==0)
                break;
                map[i][v]=1;
            }
        }
        solve();
    }
    return 0;
}

模板2:

#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=105;
vector<int>ve[MAXN];
int map[MAXN][MAXN];
int DFN[MAXN];
int low[MAXN];
int stack[MAXN];
int color[MAXN]; 
int vis[MAXN];
int in[MAXN],out[MAXN];
int n,m,sig,tt,cnt;
void init()
{
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
    memset(DFN,0,sizeof(DFN));
    memset(low,0,sizeof(low));
    memset(vis,0,sizeof(vis));
    memset(stack,0,sizeof(stack));
    memset(color,0,sizeof(color));
    memset(map,0,sizeof(map));
    for(int i=1;i<=n;i++) ve[i].clear();
}
void Tarjan(int u)
{
    vis[u]=1;
    low[u]=DFN[u]=cnt++;
    stack[++tt]=u;
    for(int i=0;i<ve[u].size();i++)
    {
        int v=ve[u][i];
        if(vis[v]==0) Tarjan(v);
        if(vis[v]==1) low[u]=min(low[u],low[v]);
    }
    if(DFN[u]==low[u])
    {
        sig++;
        do{
            color[stack[tt]]=sig;
            vis[stack[tt]]=-1;
        }while(stack[tt--]!=u); 
    }
}
void slove()
{
    cnt=1,tt=-1,sig=0;
    for(int i=1;i<=n;i++)
    {
        if(vis[i]==0)
        {
            Tarjan(i);
        }
    }
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    if(map[i][j]&&color[i]!=color[j])
    {
        in[color[j]]++;
        out[color[i]]++;
    }
    int t1=0,t2=0;
    for(int i=1;i<=sig;i++)
    {
        if(!in[i])
        t1++;
        if(!out[i])
        t2++;
    }
    if(sig==1)
    printf("1\n0\n");
    else
    printf("%d\n%d\n",t1,max(t1,t2));   
}
int main()
{
    while(~scanf("%d",&n))
    {
        init();
        for(int i=1;i<=n;i++)
        {
            while(true)
            {
                int v;
                scanf("%d",&v);
                if(v==0)
                break;
                ve[i].push_back(v);     
                map[i][v]=1;        
            }
        }
        slove();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值