题意:
告诉你一段代码,然后要你找规律进行优化。
题解:
一看这道题就知道是有规律的但是硬是想了一下午都没想出来,结果上手打代码模拟一番之后就得出了答案,ORZ,不禁感叹实践出真理。这道题是怎么个规律呢?公式为:sum*k*n^(k-1).这个公式怎么的出来的呢?首先sum就是数组的总和,k就是多少行,n是数组的长度。好,现在来推导规律,首先我们看到代码就应该知道最里面那一行肯定是进行了n^k次的,然后我们先看那段代码中的a[k]是不是也运行n^k次呢,答案是肯定的。其中运行n^k中有n次是不同的数值的,就是数组中的长度,也就是可以用n次运算来算出总和sum的,那么就变成了n^(k-1)了,很好,那么*k又是怎么样来的呢,我们先将a[k]删去,看看a[k-1]项,a[k-1]在最里面那一行是不是也一样运算了n^k次呢?对,没错,然后就是用n次算出总和sum了,那么就可以得出了公式sum*k*n^(k-1)了,然后就是用快速幂来计算结果。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define LL long long int
const int MAXN=1000+7;
LL a[MAXN];
LL q_pow(LL p,LL n,LL mod)
{
LL ans=1;
while(n)
{
if(n&1)
ans=(ans*p)%mod;
p=(p*p)%mod;
n>>=1;
// printf("%lld %lld\n",ans,p);
}
// printf("%lld\n",ans);
return ans%mod;
}
int main()
{
int t,Case=1;
scanf("%d",&t);
while(t--)
{
LL n,k,mod,sum=0;
scanf("%lld%lld%lld",&n,&k,&mod);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]),sum=(sum+a[i])%mod;
sum=((sum*q_pow(n,k-1,mod))%mod*k)%mod;
printf("Case %d: %lld\n",Case++,sum);
}
}