kuangbin专题十九 UVA10689 矩阵快速幂

本文介绍了一种解决类似斐波那契数列问题的方法,通过矩阵快速幂算法求解特定位置的数值,并给出完整的C++代码实现。

题意:
给定一个类似斐波那契数列的数列的头两项,求的n项取模10^m。
题解:
斐波那契数列变形,直接堆上去模板就可以过了,这道题我WA了两次都是因为装逼,认为一看到模板题就不用动手写一下,结果头两项乘错了,晕。

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define LL long long int
struct node
{
    int m[2][2];
    node()
    {
        memset(m,0,sizeof(m));
    }   
}; 
int MOD,A,B,n,m;
node cla(node a,node b)
{
    node c;
    for(int i=0;i<2;i++)
        for(int j=0;j<2;j++)
            for(int k=0;k<2;k++)
            if(a.m[i][k]&&b.m[k][j])
            {
                c.m[i][j]+=a.m[i][k]*b.m[k][j];
                c.m[i][j]%=MOD;
            }
    return c;
}
void POW(int k)
{
    node a,c;
    for(int i=0;i<2;i++) c.m[i][i]=1;
    a.m[0][0]=1,a.m[0][1]=1;
    a.m[1][0]=1,a.m[1][1]=0;
    while(k)
    {
        if(k&1) c=cla(c,a);
        a=cla(a,a);
        k>>=1;
    }
    printf("%d\n",(B*c.m[0][0]%MOD+A*c.m[0][1]%MOD)%MOD);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d%d",&A,&B,&n,&m);
        MOD=pow(10,m);
        POW(n-1);
    }
}
内容概要:本文围绕无人机集群路径规划问题展开研究,采用五种优化算法(SFOA、APO、GOOSE、CO、PIO)【无人机集群路径规划】基于5种优化算法(SFOA、APO、GOOSE、CO、PIO)求解无人机集群路径规划研究(Matlab代码实现)进行求解,并提供了基于Matlab的代码实现。文章重点探讨了这些智能优化算法在复杂环境下的路径搜索能力、收敛性能及避障策略,通过仿真实验对比分析各算法在无人机集群协同路径规划中的有效性与优劣,旨在提升多无人机系统的任务执行效率与路径最优性。研究内容涵盖了路径规划的数学建模、适应度函数设计、约束条件处理以及多机协同机制,展示了优化算法在实际工程问题中的应用价值。; 适合人群:具备一定Matlab编程基础和优化算法知识的科研人员、自动化或计算机相关专业的研究生及高年级本科生,以及从事无人机系统开发与智能控制领域的技术人员。; 使用场景及目标:①用于解决多无人机协同执行侦察、监测、救援等任务时的路径规划问题;②为智能优化算法在复杂空间搜索问题中的性能对比提供实验平台;③辅助科研人员复现算法结果、开展进一步改进与创新研究; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建与参数设置对优化结果的影响,建议通过调整环境障碍物布局和无人机数量进行扩展实验,以增强对算法鲁棒性和可扩展性的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值