杨辉三角

问题描述

杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。

  

它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。

  

下面给出了杨辉三角形的前4行:

  

   1

  

  1 1

  

 1 2 1

  

1 3 3 1

  

给出n,输出它的前n行。

输入格式

输入包含一个数n。

输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。



/*杨辉三角*/

#include <stdio.h>

int array[10000], array_copy[10000];

void calculate(int array[],int n){

    int i;

    for (i = 0; i < n; i++) {

        array_copy[i] = array[i];

    }

    for (i = 0; i < n+1; i++) {

        if (i == 0 || i == n) {

            array[i] = 1;

        }else{

            array[i] = array_copy[i-1] + array_copy[i];

        }

    }

}


int main(int argc, char ** argv){

    int n;

    int i = 1;

    int j = 0;

    array[0] = 1;

    scanf("%d", &n);

    if (n == 1) {

        printf("1\n");

    }else{

        printf("1\n");

        while (i < n) {

            calculate(array, i);

            i++;

            for (j = 0; j < i; j++) {

                printf("%d ",array[j]);

            }

            printf("\n");

        }

    }

    return 0;

}

/*

 总结:

 1.这道题关键在于搞清楚杨辉三角是怎么算出来的,他是前两项的和相加得到的

 2.还要注意每次计算新的数组时候要保存原来的数组

 */

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值