acwing动态规划(二)——线性DP、区间DP、计数类DP

1.线性DP

递推的顺序是线性的。

1.数字三角形

算法思想:自上而下,判断可以选择的两个数中较大的那个。

#include <iostream>
#include <cstring>

using namespace std;

const int N = 510;
int f[N][N];

int main()
{
    int n ;
    cin >> n;
    
    memset(f , -0x3f , sizeof f);//初始化为负无穷
    
    for(int i = 1 ; i <= n ; i++)
        for(int j = 1 ; j <= i ; j++)
            cin >> f[i][j];
            
    for(int i = 2 ; i <= n ; i++)//一定要从第二行开始
        for(int j = 1 ; j <= i ; j++)
        f[i][j] += max(f[i - 1][j] , f[i - 1][j - 1]);
        
    int ans = f[n][1];
    for(int i = 2 ; i <= n ; i++)
    ans = max(ans , f[n][i]) ;
    
    cout << ans << endl;
        
    
    
}
2.最长上升子序列I O(n2)

算法思想:以倒数第二个数分类,如果最后一个数比倒数第二个大,进而判断长度。

#include <iostream>

using namespace std;

const int N = 1010;
int a[N];
int f[N];

int main()
{
    int n;
    cin >> n;
    
    a[0] = -0x3f3f3f3f;
    for(int i = 1 ; i <= n ; i++) {  
        cin >> a[i];
        for(int j = 0 ; j <= i - 1 ; j++)
        if(a[i] > a[j]) f[i] = max(f[i] , f[j] + 1);
    }
    
    int ans = 0 ; 
    for(int i = 1 ; i <= n ; i++)   ans = max(ans , f[i]);
    
    cout << ans << endl;
    return 0;
}
2.最长上升子序列II

题目:给定一个长度为N的数列,求数值严格单调递增的子序列的长度最长是多少。
1≤N≤100000,
−109≤数列中的数≤109
算法思想:维护一个数组,里面存储一个上升子序列中,末尾元素最小的值

#include <iostream>

using namespace std;

const int N = 100010;
int a[N];
int q[N];
int len;

int main()
{
    int n;
    cin >> n;
    for(int i = 0 ; i < n ; i++)    cin >> a[i];
    
    q[0] = -2e9;
    for(int i = 0 ; i < n ; i++)
    {
        int l = 0 , r = len;
        while(l < r)
        {
            int mid = l + r + 1 >> 1;
            if(q[mid] < a[i]) l = mid;
            else r = mid - 1;
        }
    
    len = max(len , r + 1);
    q[r + 1] = a[i];
    }
    
    cout << len << endl;
    return 0;
}
3.最长公共子序列

题目:给定两个长度分别为N和M的字符串A和B,求既是A的子序列又是B的子序列的字符串长度最长是多少。

状态表示:
f[i][j]表示在a的前i个字母中出现,并且在b的前j个字母中出现

状态划分:
是以a[i],b[j]是否包含在子序列当中为依据,因此可以分成四类:
①a[i]不在,b[j]不在 max = f[i-1][j-1]

②a[i]不在,b[j]在 看似是max = f[i-1][j] , 无法实际上无法用f[i-1][j]表示,因为f[i-1][j]表示的是在a的前-1i个字母中出现,并且在b的前j个字母中出现,
此时b[j]不一定出现,这与条件不完全相等,条件给定是a[i]一定不在子序列中,b[j]一定在子序列当中,但仍可以用f[i-1][j]来表示,
原因就在与条件给定的情况是被包含在f[i-1][j],即条件的情况是f[i-1][j]的子集,而求的是max,所以对结果不影响;
如要求a,b,c的最大值可以这样求:max(max(a , b) , max(b , c))虽然b被重复使用,但仍能求出max,求max只要保证不漏即可,

③a[i]在,b[j]不在 原理同②

④a[i]在,b[j]在 max = f[i-1][j-1]+1;

实际上,在计算时,①包含在②和③的情况中,所以①不用考虑

#include <iostream>

using namespace std;

const int N = 1010;

int n , m;
char a[N] , b[N];
int f[N][N];//f[i][j]表示在第一个序列的前i个字母中出现,并且在第二个序列的前
			//j个字母中出现的子序列的长度。 

int main()
{
    cin >> n >> m >> a + 1 >> b + 1;
    
    for(int i = 1 ; i <= n ; i++)
        for(int j = 1 ; j <= m ; j++)
        {
            f[i][j] = max(f[i -1][j] , f[i][j - 1]);
            f[i][j] = max(f[i][j] , f[i - 1][j - 1] + a[i] != b[j]);
        }
        
    cout << f[n][m] << endl;
    return 0;
}
4 . 最短编辑距离

题目:给定两个字符串A和B,现在要将A经过若干操作变为B,可进行的操作有:

  1. 删除–将字符串A中的某个字符删除。
  2. 插入–在字符串A的某个位置插入某个字符。
  3. 替换–将字符串A中的某个字符替换为另一个字符。

状态表示:
f[i][j]表示把a[1i]变成b[1j]需要的最少操作数

集合划分:
状态计算是依据是最后一步操作,因此有三种情况:
①增 如果a[1~i] == b[1~j-1] 则需要在a[i+1]为上增加b[j]的字母
②删 如果a[1~i-1] == b[1~j] 则需要删掉a[i]上的字母
③改 如果a[1~i-1] == b[1~j-1] 则分类:1.a[i]!=b[j]要把a[i]改成b[i] ; 2.a[i]==b[i]不需要操作

#include <iostream>

using namespace std;

const int N = 1010;

int n , m;
char a[N] , b[N];
int f[N][N];

int main()
{
    cin >> n >> a + 1 >> m >> b + 1;
    
    for(int i = 0 ; i <= m ; i++) f[0][i] = i;
    for(int i = 0 ; i <= n ; i++) f[i][0] = i;
    
    for(int i = 1 ; i <= n ; i++)
        for(int j = 1 ; j <= m ; j++)
        {	//必然会经过这一步,所以不用判断
            f[i][j] = min(f[i][j - 1] + 1 , f[i - 1][j] + 1);
            if(a[i] == b[j]) f[i][j] = min(f[i][j] , f[i - 1][j - 1]);
            else f[i][j] = min(f[i][j] , f[i - 1][j - 1] + 1);
        }
        
    cout << f[n][m] << endl;
    return 0;
}

2.区间DP

题目:合并石子。

状态表示:
f[l][r]表示合并第l堆到第r堆需要的最体力


状态计算:因为只能合并相邻两堆石子,因此合并第l~r堆石子的最终合并方式同样应该是合并某两堆,因此以最后合并的分界线k划分
记len = r - l + 1,即区间的长度
则k有len-1种取值,而不管怎么分最后一次合并的体力必然是l~r堆石子的质量和,因此先不考虑最后一次合并;
f[l][r] =f[l][k] +f[k+1][r] + l~r堆的总质量,
所以只要求出f[l][k]+f[k+1][r]的最小值即可,最后再加上l~r堆的质量
这里利用前缀和来求质量.

因为要使计算每一个状态时,需要的值已经被计算,所以以区间长度来自小到大来循环

#include <iostream>

using namespace std;

const int N = 310;

int a[N];
int f[N][N];
int n;

int main()
{
    cin >> n;
    
    for(int i = 1 ; i <= n ; i++)//计算前缀和
    {
        cin >> a[i];
        a[i] += a[i - 1];
    }
    
    for(int len = 2 ; len <= n ; len++)//为保证计算较大的区间时小区间已经被计算,所以以区间长度分类,长度自小到大。
        for(int i = 1 ; i + len - 1 <= n ; i++)
        {
            int l = i , r = i + len - 1;
            f[l][r] = 0x3f3f3f3f;
            for(int k = l ; k < r ; k++)
            f[l][r] = min(f[l][r] , f[l][k] + f[k + 1][r] + a[r] - a[l - 1]);
        }
        
    cout << f[1][n] << endl;
}

3. 计数DP

题目:在这里插入图片描述

法一、
状态表示:
f[i][j]表示总和是i,并且由j个数组成的方案数

集合划分:1.该方案中最小值是1 2.该方案中最小值大于1
1.当最小值是1时,该方案数等于舍弃该1后的方案数,因此此时的方案数是:f[i-1][j-1]
2.当最小值大于1时,把每一个数都减去1后每一个数仍大于等于1,仍合法,因此此时方案数等于把当前每个数减1的方案数,即:f[i-j][j];
因此状态转移方程是:f[i][j] = f[i - 1][j - 1] + f[i - j][j]

#include <iostream>

using namespace std;

const int N = 1010 , mod = 1e9 + 7;

int n;
int a[N];
int f[N][N];//f[i][j]表示 总和是i,并且由j个数组成的方案数

int main()
{
    cin >> n;

    f[0][0] = 1;
    for(int i = 1 ; i <= n ; i++)
        for(int j = 1 ; j <= i ; j++)
            f[i][j] = (f[i - 1][j - 1] + f[i - j][j]) % mod;

    int res = 0;
    for(int i = 1;  i <= n ; i++)   res += f[i][n];

    cout << res << endl;
    return 0;
}

    return 0;
}

法二、完全背包

因为要求是排好序的,说明不考虑顺序,所以一种背包的选法对应一种划分方式。

状态表示:
f[i][j]表示用1~i中的数凑出j的方案数

状态划分:
根据最后一个物品i的选择数量进行划分,选0个i,1个i,2个i…,然后全部加起来。
f[i][j] = f[i-1][j] + f[i-1][j-i] + f[i-1][j-2i] +…+f[i-1][j-si]
f[i][j-i] = f[i-1][j-i] + f[i-1][j-2i] +…+f[i-1][j-si]
所以f[i][j] = f[i-1][j] + f[i][j-i]
因为是完全背包,因此正序遍历j可减去第一维。

#include <iostream>

using namespace std;

const int N = 1010 , mod = 1e9 + 7;

int n;
int a[N];
int f[N];

int main()
{
    cin >> n;
    f[0] = 1;

    for(int i = 1 ; i <= n ; i++)
        for(int j = i ; j <= n ; j++)
            f[j] = (f[j] + f[j - i]) % mod;

    cout << f[n] << endl;
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值