危险系数

问题描述

抗日战争时期,冀中平原的地道战曾发挥重要作用。

地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。

我们来定义一个危险系数DF(x,y):

对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。

本题的任务是:已知网络结构,求两站点之间的危险系数。

输入格式

输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,通道数;

接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条通道;

最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。

输出格式
一个整数,如果询问的两点不连通则输出-1.
样例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出
2

#include "iostream"
#include "vector"
using namespace std;
int n,m;
bool book[1020];
int way[1020];
int begin,end;
vector<int> ve[1020];
int result=0;
int ans[1020];
int sum=0;
bool ok=0;
int len=0;
int main(){
 void dfs(int now);
 int i,a,b;
 cin>>n>>m;
 for(i=0;i<m;i++){
  cin>>a>>b;
    ve[a].push_back(b);
    ve[b].push_back(a);
 }
 for(i=1;i<=n;i++){
   book[i]=0;
   ans[i]=0;
 }
 cin>>begin>>end;
 book[begin]=1;
 dfs(begin);
 if(ok==0)
 cout<<-1;
 else{
  for(i=1;i<=n;i++)
   if(sum==ans[i])
   result++;
   cout<<result-1;
 }
 return 0;
}
void dfs(int now){
 int i;
 if(now==end){
  sum++;
  ok=1;
  for(i=0;i<len;i++)
    ans[way[i]]++;
    return;
 }
 for(i=0;i<ve[now].size();i++){
  if(book[ve[now][i]]!=1){
   book[ve[now][i]]=1;
   way[len++]=ve[now][i];
   dfs(ve[now][i]);
   book[ve[now][i]]=0;
   len--;
  }
 }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值