问题描述
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入格式
输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出格式
一个整数,如果询问的两点不连通则输出-1.
样例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出
2
#include "iostream"
#include "vector"
using namespace std;
int n,m;
bool book[1020];
int way[1020];
int begin,end;
vector<int> ve[1020];
int result=0;
int ans[1020];
int sum=0;
bool ok=0;
int len=0;
int main(){
void dfs(int now);
int i,a,b;
cin>>n>>m;
for(i=0;i<m;i++){
cin>>a>>b;
ve[a].push_back(b);
ve[b].push_back(a);
}
for(i=1;i<=n;i++){
book[i]=0;
ans[i]=0;
}
cin>>begin>>end;
book[begin]=1;
dfs(begin);
if(ok==0)
cout<<-1;
else{
for(i=1;i<=n;i++)
if(sum==ans[i])
result++;
cout<<result-1;
}
return 0;
}
void dfs(int now){
int i;
if(now==end){
sum++;
ok=1;
for(i=0;i<len;i++)
ans[way[i]]++;
return;
}
for(i=0;i<ve[now].size();i++){
if(book[ve[now][i]]!=1){
book[ve[now][i]]=1;
way[len++]=ve[now][i];
dfs(ve[now][i]);
book[ve[now][i]]=0;
len--;
}
}
}
#include "vector"
using namespace std;
int n,m;
bool book[1020];
int way[1020];
int begin,end;
vector<int> ve[1020];
int result=0;
int ans[1020];
int sum=0;
bool ok=0;
int len=0;
int main(){
void dfs(int now);
int i,a,b;
cin>>n>>m;
for(i=0;i<m;i++){
cin>>a>>b;
ve[a].push_back(b);
ve[b].push_back(a);
}
for(i=1;i<=n;i++){
book[i]=0;
ans[i]=0;
}
cin>>begin>>end;
book[begin]=1;
dfs(begin);
if(ok==0)
cout<<-1;
else{
for(i=1;i<=n;i++)
if(sum==ans[i])
result++;
cout<<result-1;
}
return 0;
}
void dfs(int now){
int i;
if(now==end){
sum++;
ok=1;
for(i=0;i<len;i++)
ans[way[i]]++;
return;
}
for(i=0;i<ve[now].size();i++){
if(book[ve[now][i]]!=1){
book[ve[now][i]]=1;
way[len++]=ve[now][i];
dfs(ve[now][i]);
book[ve[now][i]]=0;
len--;
}
}
}