序列变换
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1204 Accepted Submission(s): 449
Problem Description
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。
请输出最少需要修改多少个元素。
Input
第一行输入一个
T(1≤T≤10)
,表示有多少组数据
每一组数据:
第一行输入一个 N(1≤N≤105) ,表示数列的长度
第二行输入N个数 A1,A2,...,An 。
每一个数列中的元素都是正整数而且不超过 106 。
每一组数据:
第一行输入一个 N(1≤N≤105) ,表示数列的长度
第二行输入N个数 A1,A2,...,An 。
每一个数列中的元素都是正整数而且不超过 106 。
Output
对于每组数据,先输出一行
Case #i:
然后输出最少需要修改多少个元素。
Case #i:
然后输出最少需要修改多少个元素。
Sample Input
2 2 1 10 3 2 5 4
Sample Output
Case #1: 0 Case #2: 1
Source
/*
参考思路网址:http://www.cnblogs.com/jklongint/p/4579042.html
思路: 修改数量最少的元素使得这个数列严格递增,等价于让数量最多的元素不变,
然后修改其余的元素。也就是从序列里面选尽量多的数,使得其它数修改后能形成一个
单调递增序列。这跟LIS很像,不过多了个限制,我们尝试用数学式子来描述这个限制,
a[i]-a[j]>=i-j,i>j,a[i],a[j]∈LIS,变形就是a[i]-i>=a[j]-j。
一种自然的想法就产生了,将原序列做个变换,a[i]->a[i]-i,
然后对新序列求最长非降序列,那么最长非降序列里的数的个数就是不变的数的最大个
数,用n减去就是答案。
*/
/*超时了
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std ;
const int maxn = 100010 ;
int a[maxn];
int dp[maxn];
int main()
{
int now,t,i,j,n,re;
scanf("%d",&t);
for(now=1;now<=t;now++){
re=-99999999;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
a[i]-=i;
dp[i]=1;
}
for(i=1;i<=n;i++){ //求最长非降子序列
for(j=1;j<i;j++){
if(a[i]>=a[j])
dp[i]=max(dp[j]+1,dp[i]);
}
if(dp[i]>re)
re=dp[i];
}
printf("Case #%d:\n",now);
printf("%d\n",n-re);
}
return 0;
}*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
int dp[123456], n, a[123456];
int LIS(int *from, int *to) {
dp[0] = -1e9;
for (int i = 1; i <= n; i ++) dp[i] = 1e9;
int ans = 0;
for (int *pint = from; pint < to; pint ++) {
int pos = upper_bound(dp, dp + n, *pint) - dp - 1;
dp[pos + 1] = min(dp[pos + 1], *pint);
ans = max(ans, pos + 1);
}
return ans;
}
int main() {
int T, cas = 0;
cin >> T;
while (T --) {
cin >> n;
for (int i = 0; i < n; i ++) {
scanf("%d", a + i);
a[i] -= i;
}
printf("Case #%d:\n%d\n", ++ cas, n - LIS(a, a + n));
}
return 0;
}