HDU 5256 序列变换(最长上升子序列)

序列变换

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1204 Accepted Submission(s): 449


Problem Description
我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增。其中无论是修改前还是修改后,每个元素都必须是整数。
请输出最少需要修改多少个元素。

Input
第一行输入一个 T(1T10) ,表示有多少组数据

每一组数据:

第一行输入一个 N(1N105) ,表示数列的长度

第二行输入N个数 A1,A2,...,An

每一个数列中的元素都是正整数而且不超过 106

Output
对于每组数据,先输出一行

Case #i:

然后输出最少需要修改多少个元素。

Sample Input
  
  
2 2 1 10 3 2 5 4

Sample Output
  
  
Case #1: 0 Case #2: 1

Source

2015年百度之星程序设计大赛 - 初赛(2) 


/*
参考思路网址:http://www.cnblogs.com/jklongint/p/4579042.html 
思路: 修改数量最少的元素使得这个数列严格递增,等价于让数量最多的元素不变,
然后修改其余的元素。也就是从序列里面选尽量多的数,使得其它数修改后能形成一个
单调递增序列。这跟LIS很像,不过多了个限制,我们尝试用数学式子来描述这个限制,
a[i]-a[j]>=i-j,i>j,a[i],a[j]∈LIS,变形就是a[i]-i>=a[j]-j。
一种自然的想法就产生了,将原序列做个变换,a[i]->a[i]-i,
然后对新序列求最长非降序列,那么最长非降序列里的数的个数就是不变的数的最大个
数,用n减去就是答案。
*/
/*超时了 
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath> 
#include<algorithm>
using namespace std ;
const int maxn = 100010 ;
int a[maxn];
int dp[maxn];
int main()
{
    int now,t,i,j,n,re;
    scanf("%d",&t);
    for(now=1;now<=t;now++){
    	re=-99999999;
    	scanf("%d",&n);
    	for(i=1;i<=n;i++){
    		scanf("%d",&a[i]);
    		a[i]-=i;
    		dp[i]=1;
		}
		for(i=1;i<=n;i++){ //求最长非降子序列 
			for(j=1;j<i;j++){
			    if(a[i]>=a[j])
				  dp[i]=max(dp[j]+1,dp[i]);			
			} 
			if(dp[i]>re)
			  re=dp[i];
		}
    	printf("Case #%d:\n",now);
    	printf("%d\n",n-re);
	}
    return  0;
}*/

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
 
int dp[123456], n, a[123456];
 
int LIS(int *from, int *to) {
    dp[0] = -1e9;
    for (int i = 1; i <= n; i ++) dp[i] = 1e9;
    int ans = 0;
    for (int *pint = from; pint < to; pint ++) {
        int pos = upper_bound(dp, dp + n, *pint) - dp - 1;
        dp[pos + 1] = min(dp[pos + 1], *pint);
        ans = max(ans, pos + 1);
    }
    return ans;
}
int main() {
    int T, cas = 0;
    cin >> T;
    while (T --) {
        cin >> n;
        for (int i = 0; i < n; i ++) {
            scanf("%d", a + i);
            a[i] -= i;
        }
        printf("Case #%d:\n%d\n", ++ cas, n - LIS(a, a + n));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值