洛谷P1135 奇怪的电梯

8 篇文章 0 订阅
5 篇文章 0 订阅

P1135 奇怪的电梯

 

题目描述

呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第i层楼(1≤i≤N)上有一个数字Ki​(0≤Ki​≤N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如:3,3,1,2,5代表了Ki​(K1​=3,K2​=3,…),从1楼开始。在1楼,按“上”可以到4楼,按“下”是不起作用的,因为没有−2楼。那么,从A楼到B楼至少要按几次按钮呢?

输入格式

共二行。

第一行为3个用空格隔开的正整数,表示N,A,B(1≤N≤200,1≤A,B≤N)。

第二行为N个用空格隔开的非负整数,表示Ki​。

输出格式

一行,即最少按键次数,若无法到达,则输出−1。

输入输出样例

输入 #1

5 1 5
3 3 1 2 5

输出 #1

3

思路:bfs,对当前的楼层来说有3种情况,1.到达了目标楼层,2.没到达目标楼层,向上走nums[i]层,3.没到达目标楼层,向下走nums[i]层.


import java.util.LinkedList;
import java.util.HashMap;
import java.util.Map;
import java.util.Queue;
import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner in = new Scanner(System.in);
		int n = in.nextInt();
		int a = in.nextInt();
		int b = in.nextInt();
		int[]nums = new int[n];
		for(int i = 0; i < n; i++) {
			nums[i] = in.nextInt();
		}
		
		int min = Integer.MAX_VALUE;
		Map<Integer, Integer>mp = new HashMap();//存放楼层的访问次数
		Queue<Integer>queue = new LinkedList<Integer>();
		Queue<Integer>step = new LinkedList<Integer>();
		queue.offer(a);
		step.offer(0);
		while(!queue.isEmpty()) {
			int cur = queue.poll();//当前层数
			int steps = step.poll();
			//如果当前楼层已经访问过continue;
			if(mp.containsKey(cur))
				continue;
			else 
				mp.put(cur, steps);
			if(cur == b) {//到达目标楼层
				min = steps;
				break;
			}
			int[]choice = {-1,1};
			for(int i = 0; i < 2; i++) {
				//有俩种选择,向上走nums[cur-1]步或者向下走nums[cur-1]步
				int current = cur + choice[i] * nums[cur - 1];
                if(current < 1 || current > n) { //电梯楼层不能超出所给的楼层范围
					continue;
				}else {
					queue.offer(current);
					step.offer(steps + 1);
				}
			}
		}
		
		if(min == Integer.MAX_VALUE) {
			System.out.print(-1);
		}else
			System.out.print(min);
		
	}

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值