【算法】O(n)的topK算法(字节跳动面试题)

博客主要介绍了字节跳动面试中遇到的一道算法题,要求找到数组中第K大的元素。文章详细讲解了如何利用快速选择算法在平均情况下达到O(n)的时间复杂度,避免了排序和小顶堆的额外空间消耗。内容包括算法思想和Java实现,指出在最坏情况下算法复杂度为O(N^2),并提醒读者注意经过算法处理后,数组前K个元素即为所求。
摘要由CSDN通过智能技术生成
前言

字节跳动二面面试题,开始想到维护小顶堆,面试官提示优化到O(n),于是考虑计数排序,但计数排序需要大量空间,本题最优解法为《算法导论》上的快速选择算法,记录一下。
topK算法常见于排行榜等场景,常规的解法有:

  1. 排序 O(nlogn)
    对整个数组进行了排序,显然我们只需要前K个,后面的N-K是无意义的排序,有优化空间。
  2. 堆 O(nlogk)
    建小顶堆,并保持堆中元素个数为k个,遍历一次数组,每个数组中元素与堆顶元素比较,如果大于堆顶元素,则将堆顶元素移除,加入新元素。
  3. 计数排序
    要求数组的数字有一定区间性,否则会消耗大量空间
快速选择算法

思想
简化版的快速排序,通过一趟快排过后,序列将被分为比key小的数,key,比key大的数三部分,假设key的下标为i,如果k < i,则第K大的数必然在快排左边的区域;如果k = i,则key就是第k大的数;如果k > i,则k必然在快排的右边的区域。接下来递归即可得到第k大的数。
平均复杂度为O(N),最坏复杂度为O(N^2)。其中最坏情况对应数组有序,线性扫描,没能有效将数组进行划分的情况。

Java实现

注意:经过topK后,数组前K个元素即为topK。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值