二项式反演的应用

众所周知,二项式反演可以表示成
在这里插入图片描述
是一个及其对称的式子,常用的表达式是
在这里插入图片描述
网上有很多很好的证明,比如这个博客,感觉容斥的证明比较形象,这里就不多赘述了。

恰好和至多的转换

如果要求blabla恰好有k个blabla的时候,有时候会很难算,而求至多有k个blabla的时候会很好算

设 fi表示恰好的方案数, g i 表示至多的方案数,则有
在这里插入图片描述
根据二项式反演有

在这里插入图片描述

恰好和至少的转换

同样有时候至少k个blabla的要更好求

设 f i 表示恰好的方案数,g i表示至少的方案数,则有在这里插入图片描述

根据二项式反演有

在这里插入图片描述

例题:

题目传送门:

CCA的小球
在这里插入图片描述
转恰好为至少即可

AC Code

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const int N=1e6+10;
int col[N];
unordered_map<int,int>mp;
LL fac[N],mi[N];
LL quick_pow(LL x,LL y)
{
    LL ans=1;
    while(y)
    {
        if(y%2) ans=ans*x%mod;
        x=x*x%mod;
        y=y/2;
    }
    return ans;
}
int main()
{
    int n;
    scanf("%d",&n);
    int num=0;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&col[i]);
        mp[col[i]]++;
        if(mp[col[i]]>1) num++;
    } 
    LL res=0;
    fac[0]=1,mi[0]=1;
    for(int i=1;i<=n;i++)
    {
        fac[i]=fac[i-1]*i%mod;
        mi[i]=mi[i-1]*2%mod;
    }
    LL p=quick_pow(mi[num],mod-2);
    for(int i=0;i<=num;i++)
    {
        LL temp;
        if(i%2==0) temp=1;
        else temp=-1;
        res=(res+temp*fac[num]*quick_pow(fac[i]*fac[num-i]%mod,mod-2)%mod*fac[n-i]%mod*mi[i]%mod*p%mod+mod)%mod;
    }
    printf("%lld\n",res);
    system("pause");
    return 0;
}

例题:【UVALive - 7040】 Color

题目大意:

有n个连续的格子和m种不同的染料,现在要用恰好对这n个格子染色,每种染料至少染一个格子,并且任意相邻的格子颜色不同,问这样选出染料并染色的合法方案数对109+7取模的值

思路:

我们先看只有k个的时候的种数,计算出结果只要乘上C(m,k)就是答案了。
我们先不管恰好是k个的限制,我们想成至多为k个的时候的答案,设为F(k)
易知:
F( k )= k * ( k-1 ) n-1

那么我们在恰好是k个的时候,也就是我们要求的答案,设为f(k),显然这个不好求,但是我们可以找到f和F的关系:
则有在这里插入图片描述
然后反演成:
在这里插入图片描述
就可以做了,最后别忘记乘上组合数

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ull  unsigned long long
#define ll long long
#define mod 1000000007
#define maxn 1000005
using namespace std;
ll fac[maxn],inv[maxn];
ll P(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1)ans=ans*a%mod;
        b>>=1;
        a=a*a%mod;
    }
    return ans;
}
void init()
{
    fac[0]=1;
    for(int i=1;i<maxn;i++)
        fac[i]=fac[i-1]*i%mod;
    inv[maxn-1]=P(fac[maxn-1],mod-2);
    inv[0]=1;
    for(int i=maxn-2;i>=1;i--)
        inv[i]=inv[i+1]*(i+1)%mod;
}
ll C(int n,int m)
{
    if(n<m)return 0;
    return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int n=1;
ll g(ll x)
{
    return x*P(x-1,n-1)%mod;
}
int main()
{
    init();
    int t;
    cin>>t;
    int cal=1;
    int m,k;
    while(t--)
    {
        cin>>n>>m>>k;
        ll ans=0;
        for(int i=1;i<=k;i++)
        {
            ll temp=C(k,i)*g(i)%mod;
            //cout<<C(k,i)<<" "<<g(i)<<" "<<temp<<endl;
            if((k-i)&1)ans=(ans-temp+mod)%mod;
            else ans=(ans+temp)%mod;
        }
        for(int i=m;i>m-k;i--)
            ans=ans*i%mod;
        ans=ans*inv[k]%mod;
        printf("Case #%d: %lld\n",cal++,ans);
   }
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值