众所周知,二项式反演可以表示成
是一个及其对称的式子,常用的表达式是
网上有很多很好的证明,比如这个博客,感觉容斥的证明比较形象,这里就不多赘述了。
恰好和至多的转换
如果要求blabla恰好有k个blabla的时候,有时候会很难算,而求至多有k个blabla的时候会很好算
设 fi表示恰好的方案数, g i 表示至多的方案数,则有
根据二项式反演有
恰好和至少的转换
同样有时候至少k个blabla的要更好求
设 f i 表示恰好的方案数,g i表示至少的方案数,则有
根据二项式反演有
例题:
题目传送门:
CCA的小球
转恰好为至少即可
AC Code
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
const int N=1e6+10;
int col[N];
unordered_map<int,int>mp;
LL fac[N],mi[N];
LL quick_pow(LL x,LL y)
{
LL ans=1;
while(y)
{
if(y%2) ans=ans*x%mod;
x=x*x%mod;
y=y/2;
}
return ans;
}
int main()
{
int n;
scanf("%d",&n);
int num=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&col[i]);
mp[col[i]]++;
if(mp[col[i]]>1) num++;
}
LL res=0;
fac[0]=1,mi[0]=1;
for(int i=1;i<=n;i++)
{
fac[i]=fac[i-1]*i%mod;
mi[i]=mi[i-1]*2%mod;
}
LL p=quick_pow(mi[num],mod-2);
for(int i=0;i<=num;i++)
{
LL temp;
if(i%2==0) temp=1;
else temp=-1;
res=(res+temp*fac[num]*quick_pow(fac[i]*fac[num-i]%mod,mod-2)%mod*fac[n-i]%mod*mi[i]%mod*p%mod+mod)%mod;
}
printf("%lld\n",res);
system("pause");
return 0;
}
例题:【UVALive - 7040】 Color
题目大意:
有n个连续的格子和m种不同的染料,现在要用恰好对这n个格子染色,每种染料至少染一个格子,并且任意相邻的格子颜色不同,问这样选出染料并染色的合法方案数对109+7取模的值
思路:
我们先看只有k个的时候的种数,计算出结果只要乘上C(m,k)就是答案了。
我们先不管恰好是k个的限制,我们想成至多为k个的时候的答案,设为F(k)
易知:
F( k )= k * ( k-1 ) n-1
那么我们在恰好是k个的时候,也就是我们要求的答案,设为f(k),显然这个不好求,但是我们可以找到f和F的关系:
则有
然后反演成:
就可以做了,最后别忘记乘上组合数
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ull unsigned long long
#define ll long long
#define mod 1000000007
#define maxn 1000005
using namespace std;
ll fac[maxn],inv[maxn];
ll P(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1)ans=ans*a%mod;
b>>=1;
a=a*a%mod;
}
return ans;
}
void init()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
fac[i]=fac[i-1]*i%mod;
inv[maxn-1]=P(fac[maxn-1],mod-2);
inv[0]=1;
for(int i=maxn-2;i>=1;i--)
inv[i]=inv[i+1]*(i+1)%mod;
}
ll C(int n,int m)
{
if(n<m)return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int n=1;
ll g(ll x)
{
return x*P(x-1,n-1)%mod;
}
int main()
{
init();
int t;
cin>>t;
int cal=1;
int m,k;
while(t--)
{
cin>>n>>m>>k;
ll ans=0;
for(int i=1;i<=k;i++)
{
ll temp=C(k,i)*g(i)%mod;
//cout<<C(k,i)<<" "<<g(i)<<" "<<temp<<endl;
if((k-i)&1)ans=(ans-temp+mod)%mod;
else ans=(ans+temp)%mod;
}
for(int i=m;i>m-k;i--)
ans=ans*i%mod;
ans=ans*inv[k]%mod;
printf("Case #%d: %lld\n",cal++,ans);
}
return 0;
}