问题 C: Count Pairs (CodeForces - 1189E )
时间限制: 1 Sec 内存限制: 128 MB
提交: 38 解决: 13
[提交][状态]
题目描述
输入
输出
提示
林肯是大头:http://www.accoders.com/problem.php?cid=1967&pid=2
思路:
显然需要数论操作优化时间复杂度
同余式两边同乘(a[i]-a[j])
->(a[i]方-a[j]方)(a[i]方+a[j]方)
->a[i]四次方-a[j]四次方 同余 k(a[i] -a[j])
然后把那个等式左右的a[i]和a[j]各移到两侧就好了
注意:
上边那些都会
注意取余啊!!!
改了二十多份,最后把a[i]提取公因式结果A了。。。
因为忽略了运算顺序,,,以后有取余问题一定乘一下取余一下!
#include<cstdio>
#include<algorithm>
#include<cstring>
#define re register
using namespace std;
const int maxn=3e5+10;
long long a[maxn];
long long n,p,k;
long long q[maxn];
void add(long long x)
{
long long temp=(x*(x*x%p*x%p-k)%p+p)%p;
q[++q[0]]=temp;
}
long long jc[maxn];
int main()
{
scanf("%lld%lld%lld",&n,&p,&k);
jc[0]=0;
jc[1]=1;
for(int i=2;i<=n;i++)
{
jc[i]=jc[i-1]+i;
}
/*for(int i=1;i<=n;i++)
{
printf("jc%lld pjc%lld inv%lld\n",jc[i],pjc[i],inv[i]);
}*/
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
add(a[i]);
}
long long ans=0;
sort(q+1,q+1+q[0]);
// printf("%d\n",q[0]);
long long temp=q[1];
int nn=1;
int head=2;
while(head<=n+1)
{
if(q[head]==temp)
nn++;
else
{
ans+=jc[nn-1];
temp=q[head];
nn=1;
}
head++;
}
printf("%lld",ans);
return 0;
}