Count Pairs (CodeForces - 1189E )

问题 C: Count Pairs (CodeForces - 1189E )
时间限制: 1 Sec 内存限制: 128 MB
提交: 38 解决: 13
[提交][状态]
题目描述

在这里插入图片描述

在这里插入图片描述
输入
输出
提示
在这里插入图片描述
林肯是大头:http://www.accoders.com/problem.php?cid=1967&pid=2
思路:
显然需要数论操作优化时间复杂度
同余式两边同乘(a[i]-a[j])
->(a[i]方-a[j]方)(a[i]方+a[j]方)
->a[i]四次方-a[j]四次方 同余 k
(a[i] -a[j])
然后把那个等式左右的a[i]和a[j]各移到两侧就好了
注意:
上边那些都会
注意取余啊!!!
改了二十多份,最后把a[i]提取公因式结果A了。。。
因为忽略了运算顺序,,,以后有取余问题一定乘一下取余一下!

#include<cstdio>
#include<algorithm>
#include<cstring>
#define re register
using namespace std;
const int maxn=3e5+10;
long long a[maxn];
long long n,p,k;
long long q[maxn];
void add(long long x)
{
    long long temp=(x*(x*x%p*x%p-k)%p+p)%p;
    q[++q[0]]=temp;
}
long long jc[maxn];
int main()
{
    scanf("%lld%lld%lld",&n,&p,&k);
    jc[0]=0;
    jc[1]=1;
    for(int i=2;i<=n;i++)
    {
        jc[i]=jc[i-1]+i;
    }
    /*for(int i=1;i<=n;i++)
    {
        printf("jc%lld pjc%lld inv%lld\n",jc[i],pjc[i],inv[i]);
    }*/
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        add(a[i]);
    }
    long long ans=0;
    sort(q+1,q+1+q[0]);
  //  printf("%d\n",q[0]);
    long long temp=q[1];
    int nn=1;
    int head=2;
    while(head<=n+1)
    {
        if(q[head]==temp)
        nn++;
        else
        {
            ans+=jc[nn-1];
            temp=q[head];
            nn=1;
        }
        head++;
    }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值