BCEloss「 PyTorch 深度学习实践 第6讲」2023年12月5日

文章介绍了如何在PyTorch中使用BCELoss函数计算二分类问题的交叉熵损失,强调了size_average参数的弃用以及reduction参数的替代作用。
摘要由CSDN通过智能技术生成

关于BCE loss写了几行代码,帮助理解。

import math
import torch
pred = torch.tensor([[-0.2],[0.2],[0.8]])
target = torch.tensor([[0.0],[0.0],[1.0]])
 
sigmoid = torch.nn.Sigmoid()
pred_s = sigmoid(pred)
print(pred_s)
"""
pred_s 输出tensor([[0.4502],[0.5498],[0.6900]])
0*math.log(0.4502)+1*math.log(1-0.4502)
0*math.log(0.5498)+1*math.log(1-0.5498)
1*math.log(0.6900) + 0*log(1-0.6900)
"""
result = 0
i=0
for label in target:
    if label.item() == 0:
        result +=  math.log(1-pred_s[i].item())
    else:
        result += math.log(pred_s[i].item())
    i+=1
result /= 3
print("bce:", -result)
loss = torch.nn.BCELoss()
print('BCELoss:',loss(pred_s,target).item())

在您提供的代码中,`torch.nn.BCELoss`是用于二分类问题的损失函数,它计算二进制交叉熵损失。然而,`size_average`参数在PyTorch 1.0版本之后已被弃用,不再使用。

在较新的PyTorch版本中,您可以使用`torch.nn.BCELoss`的`reduction`参数来控制损失的计算方式。`reduction`参数可选的取值包括:

- `'none'`:不进行任何降维操作,返回每个样本的损失值(默认值)。
- `'mean'`:对所有样本的损失值进行求平均。
- `'sum'`:对所有样本的损失值进行求和。

以下是一个示例,展示了如何使用`torch.nn.BCELoss`并指定`reduction`参数的值:

```python
import torch
import torch.nn as nn

# 创建二分类问题的标签和预测
labels = torch.tensor([0, 1, 1, 0], dtype=torch.float32)
predictions = torch.tensor([0.2, 0.8, 0.6, 0.3], dtype=torch.float32)

# 创建二分类交叉熵损失函数
criterion = nn.BCELoss(reduction='mean')

# 计算损失
loss = criterion(predictions, labels)
print(loss)
```

在上述示例中,我们创建了一个二分类问题的标签和预测,并使用`nn.BCELoss`创建了二分类交叉熵损失函数。通过指定`reduction='mean'`,我们将损失进行平均计算。您可以根据需要选择合适的`reduction`参数值。

请注意,`size_average=True`已被弃用,不再使用。如果您使用的是较新版本的PyTorch,建议使用`reduction`参数来控制损失的计算方式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值