线性代数笔记

线性代数笔记

本笔记仅用作个人使用,主要目的是捡起大一几何与代数的知识,顺带把线性代数给学好。前置知识包括方程组的计算(中学);高斯消元;矩阵乘法。
基于MIT Strang教授线性代数课程丁坤博覃立波的笔记而来,如有不妥或侵权请指出,我会及时修改。

【20220726】进度:20/34,争取至少两天一更,每次更3/34。

1 方程组的几何解释

以如下方程组为例:
{ 2 x − y = 0 , − x + 2 y = 3. \left\{ \begin{aligned} 2x-y & = &0, \\ -x+2y & = &3. \end{aligned} \right. {2xyx+2y==0,3.
对方程组我们有两种解释:
(1)二维的行图像:按行提取出每一条直线。即我们很早学到的两个一元一次方程(两条直线)的几何表述,其解就是交点。
(2)二维的列图像:按列提取出每一个向量,求解的过程实际上就是在求一组合适线性组合,使其能够组合(2,-1)和(-1,2)两个向量,并获得(0,3)。

相似的,对如下矩阵乘法也有两种解释:
A = [ 2 5 1 3 ] , x = [ 1 2 ] A=\begin{bmatrix} 2& 5\\ 1& 3 \end{bmatrix}, x=\begin{bmatrix} 1\\ 2 \end{bmatrix} A=[2153],x=[12]
(1) A x = [ 2 5 1 3 ] [ 1 2 ] = 1 [ 2 1 ] + 2 [ 5 3 ] = [ 12 7 ] Ax=\begin{bmatrix} 2& 5\\ 1& 3 \end{bmatrix}\begin{bmatrix} 1\\ 2 \end{bmatrix}=1\begin{bmatrix} 2\\ 1 \end{bmatrix}+2\begin{bmatrix} 5\\ 3 \end{bmatrix}=\begin{bmatrix} 12\\ 7 \end{bmatrix} Ax=[2153][12]=1[21]+2[53]=[127]
(2) A x = [ 2 5 1 3 ] [ 1 2 ] = [ ( 2 , 5 ) ⋅ ( 1 , 2 ) ( 1 , 3 ) ⋅ ( 1 , 2 ) ] = [ 12 7 ] Ax=\begin{bmatrix} 2& 5\\ 1& 3 \end{bmatrix}\begin{bmatrix} 1\\ 2 \end{bmatrix}=\begin{bmatrix} (2,5)\cdot(1,2)\\ (1,3)\cdot(1,2) \end{bmatrix}=\begin{bmatrix} 12\\ 7 \end{bmatrix} Ax=[2153][12]=[(2,5)(1,2)(1,3)(1,2)]=[127]

2 矩阵消元

基本的消元方法和初中学到的基本一致,不再赘述。接下来主要借助例子来介绍概念。
【例】
[ 1 2 1 3 8 1 0 4 1 ] [ x y z ] = [ 2 12 2 ] \begin{bmatrix} 1&2&1\\ 3&8&1\\ 0&4&1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 2\\ 12\\ 2 \end{bmatrix} 130284111 xyz = 2122

2.1 增广矩阵
可以通过增广矩阵的消元来求解该方程组,所谓增广矩阵,即把两个矩阵拼起来: [ 1 2 1 2 3 8 1 12 0 4 1 2 ] \begin{bmatrix} 1&2&1&2\\ 3&8&1&12\\ 0&4&1&2 \end{bmatrix} 1302841112122 ,消元后得 [ 1 2 1 2 0 2 − 2 6 0 0 5 − 10 ] \begin{bmatrix} 1&2&1&2\\ 0&2&-2&6\\ 0&0&5&-10 \end{bmatrix} 1002201252610 ,而后直接从下向上回代求解即可。

2.2 向量和矩阵的乘法
本节用到的所有向量均默认为列向量。
矩阵列的线性组合:
[ a T , b T , c T ] [ 3 4 5 ] = [ 3 a T , 4 b T , 5 c T ] \begin{bmatrix} \mathbf{a}^T,\mathbf{b}^T,\mathbf{c}^T \end{bmatrix}\begin{bmatrix} 3\\ 4\\ 5 \end{bmatrix}=\begin{bmatrix} 3\mathbf{a}^T,4\mathbf{b}^T,5\mathbf{c}^T \end{bmatrix} [aT,bT,cT] 345 =[3aT,4bT,5cT]
矩阵行的线性组合:
[ 3 , 4 , 5 ] [ a b c ] = [ 3 a 4 b 5 c ] \begin{bmatrix} 3,4,5 \end{bmatrix}\begin{bmatrix} \mathbf{a}\\ \mathbf{b}\\ \mathbf{c} \end{bmatrix}=\begin{bmatrix} 3\mathbf{a}\\ 4\mathbf{b}\\ 5\mathbf{c} \end{bmatrix} [3,4,5] abc = 3a4b5c
2.3 操作矩阵
(1)消元矩阵
【例】 3 × 3 3\times3 3×3矩阵的第二行*(-2)再加到第三行,对应的消元矩阵为:
[ 1 0 0 0 1 0 0 − 2 1 ] \begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&-2&1 \end{bmatrix} 100012001
(2)行列变换矩阵:
左乘-行变换:
[ 0 1 1 0 ] [ a b c d ] = [ c b a b ] \begin{bmatrix} 0&1\\ 1&0 \end{bmatrix}\begin{bmatrix} a&b\\ c&d \end{bmatrix}=\begin{bmatrix} c&b\\ a&b \end{bmatrix} [0110][acbd]=[cabb]
右乘-列变换:
[ a b c d ] [ 0 1 1 0 ] = [ b a d c ] \begin{bmatrix} a&b\\ c&d \end{bmatrix}\begin{bmatrix} 0&1\\ 1&0 \end{bmatrix}=\begin{bmatrix} b&a\\ d&c \end{bmatrix} [acbd][0110]=[bdac]

3 逆矩阵

如果方阵 A \mathbf{A} A可逆,则有 A − 1 \mathbf{A}^{-1} A1使得 A A − 1 = I = A − 1 A \mathbf{A}\mathbf{A}^{-1}=I=\mathbf{A}^{-1}\mathbf{A} AA1=I=A1A

不可逆的矩阵例如:(a)非方阵;(b)行列式为0的方阵。
若存在非零向量 x \mathbf{x} x使得 A x = 0 \mathbf{A}\mathbf{x}=0 Ax=0,则 A \mathbf{A} A不可逆。可用反证法证明: A − 1 A x = x \mathbf{A}^{-1}\mathbf{A}\mathbf{x}=\mathbf{x} A1Ax=x根据结合律即可证明。

求矩阵的逆,例如:
[ 1 3 2 7 ] \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix} [1237],即求得矩阵满足: [ 1 3 2 7 ] [ a b c d ] = I 2 \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\begin{bmatrix} a&b\\ c&d \end{bmatrix}=\mathbf{I}_2 [1237][acbd]=I2
可以用如下方法:

3.1 高斯-若尔当消元(Gauss-Jordan Elimination)
[ 1 3 2 7 ] [ a c ] = [ 1 0 ] \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\begin{bmatrix} a\\ c \end{bmatrix}=\begin{bmatrix} 1\\ 0 \end{bmatrix} [1237][ac]=[10] [ 1 3 2 7 ] [ b d ] = [ 0 1 ] \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}\begin{bmatrix} b\\ d \end{bmatrix}=\begin{bmatrix} 0\\ 1 \end{bmatrix} [1237][bd]=[01],相应的增广矩阵为 [ 1 3 1 0 2 7 0 1 ] \begin{bmatrix} 1&3&1&0\\ 2&7&0&1 \end{bmatrix} [12371001]而后对增广矩阵消元,使其从 [ A ∣ I ] [\mathbf{A}|\mathbf{I}] [AI]变成 [ I ∣ B ] [\mathbf{I}|\mathbf{B}] [IB]的形式,即为 [ 1 0 7 − 3 0 1 − 2 1 ] \begin{bmatrix} 1&0&7&-3\\ 0&1&-2&1 \end{bmatrix} [10017231],逆矩阵即为: [ 7 − 3 − 2 1 ] \begin{bmatrix} 7&-3\\ -2&1 \end{bmatrix} [7231]

3.1 逆矩阵的性质
A B − 1 = B − 1 A − 1 \mathbf{AB}^{-1}=\mathbf{B^{-1}A^{-1}} AB1=B1A1
( A A − 1 ) T = ( A − 1 ) T A T (\mathbf{AA^{-1}})^T=(\mathbf{A^{-1})^TA^T} (AA1)T=(A1)TAT
( A − 1 ) T = ( A T ) − 1 (\mathbf{A^{-1}})^T=(\mathbf{A}^T)^{-1} (A1)T=(AT)1(转置和求逆顺序可颠倒)

4 A的LU分解

【例】
已知 E 32 E 31 E 21 A = U , E 32 = [ 1 0 0 0 1 0 0 − 5 1 ] , E 21 = [ 1 0 0 − 2 1 0 0 0 1 ] , E 31 = I \mathbf{E_{32}}\mathbf{E_{31}}\mathbf{E_{21}}\mathbf{A}=\mathbf{U},\mathbf{E_{32}}=\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&-5&1 \end{bmatrix},\mathbf{E_{21}}=\begin{bmatrix} 1&0&0\\ -2&1&0\\ 0&0&1 \end{bmatrix},\mathbf{E_{31}}=I E32E31E21A=UE32= 100015001 E21= 120010001 E31=I,求 A = L U A=LU A=LU分解后的L:
A = E 21 − 1 E 31 − 1 E 32 − 1 U \mathbf{A}=\mathbf{E_{21}}^{-1}\mathbf{E_{31}}^{-1}\mathbf{E_{32}}^{-1}\mathbf{U} A=E211E311E321U,即可得到 L = E 21 − 1 E 31 − 1 E 32 − 1 \mathbf{L}=\mathbf{E_{21}}^{-1}\mathbf{E_{31}}^{-1}\mathbf{E_{32}}^{-1} L=E211E311E321

5 转置-置换-向量空间R

对称阵:满足 A T = A \mathbf{A}^T=\mathbf{A} AT=A,进一步的有 A T A \mathbf{A}^T\mathbf{A} ATA必为对称阵。
置换矩阵:由单位阵通过行变换而来的矩阵,对于3阶则有3!个置换阵,对于n阶则有n!个置换阵。
应用:在进行高斯消元之前,需要通过行变换调整主元位置,因此LU分解的完整形式应为:
P A = L U \mathbf{PA=LU} PA=LU
线性空间:空间对线性操作(相加、数乘)封闭。
R 2 R^2 R2的子空间: R 2 R^2 R2整体;任意通过原点的直线;原点。
R 3 R^3 R3的子空间: R 3 R^3 R3整体;任意通过原点的平面;任意通过原点的直线;原点。

6 列空间和零空间

任意两个子空间的交,一定是子空间。
任意两个子空间的并,不一定是子空间。

【例】以 R 3 R^3 R3为例,子空间包括: R 3 R^3 R3整体;任意通过原点的平面P;任意通过原点的直线L;原点。那么 P ∪ L P\cup L PL不满足子空间封闭性要求,但 P ∩ L P\cap L PL满足(仅为原点)。
6.1 列空间:矩阵中列向量的线性组合。
6.2 零空间 A x = 0 Ax=0 Ax=0的所有解构成的空间。

7 求解Ax=0 主变量 特解

【例】 A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] \mathbf{A}=\begin{bmatrix} 1&2&2&2\\ 2&4&6&8\\ 3&6&8&10 \end{bmatrix} A= 1232462682810 ,求Ax=0中x构成的零空间。
[ 1 2 2 2 2 4 6 8 3 6 8 10 ] [ x 1 x 2 x 3 ] = 0 \begin{bmatrix}1&2&2&2\\2&4&6&8\\3&6&8&10 \end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=0 1232462682810 x1x2x3 =0
(1)先进行高斯消元,得到: [ 1 2 2 2 0 0 2 4 0 0 0 0 ] \begin{bmatrix} 1&2&2&2\\0&0&2&4\\0&0&0&0\end{bmatrix} 100200220240 ,A矩阵的秩 r ( A ) = 2 r(A)=2 r(A)=2。主元(主变量)为 x 1 , x 3 x_1,x_3 x1,x3,自由变量为 x 2 , x 4 x_2,x_4 x2,x4
(2)回代:自由变量设置为两个非共线二维向量 [ x 2 x 4 ] = [ 1 0 ] \begin{bmatrix} x_2\\x_4\end{bmatrix}=\begin{bmatrix} 1\\0\end{bmatrix} [x2x4]=[10] [ x 2 x 4 ] = [ 0 1 ] \begin{bmatrix} x_2\\x_4\end{bmatrix}=\begin{bmatrix} 0\\1\end{bmatrix} [x2x4]=[01],而后回代得到解向量为:
[ x 1 x 2 x 3 x 4 ] = [ − 2 1 0 0 ] \begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}=\begin{bmatrix} -2\\1\\0\\0\end{bmatrix} x1x2x3x4 = 2100 [ x 1 x 2 x 3 x 4 ] = [ 2 0 − 2 1 ] \begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}=\begin{bmatrix} 2\\0\\-2\\1\end{bmatrix} x1x2x3x4 = 2021
故子空间为: [ x 1 x 2 x 3 x 4 ] = c [ − 2 1 0 0 ] + d [ 2 0 − 2 1 ] \begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}=c\begin{bmatrix} -2\\1\\0\\0\end{bmatrix}+d\begin{bmatrix} 2\\0\\-2\\1\end{bmatrix} x1x2x3x4 =c 2100 +d 2021

7.1 简化行阶梯形式
消元+列变换使得矩阵变成 R = [ I F 0 0 ] R=\begin{bmatrix} I&F\\0&0\end{bmatrix} R=[I0F0]的形式,即为简化行阶梯形式。
上【例】中的简化行阶梯形式即为 [ 1 0 2 − 2 0 1 0 2 0 0 0 0 ] \begin{bmatrix} 1&0&2&-2\\0&1&0&2\\0&0&0&0\end{bmatrix} 100010200220 ,满足上述形式 R = [ I F 0 0 ] R=\begin{bmatrix} I&F\\0&0\end{bmatrix} R=[I0F0]

7.2 零空间的结构
故求 R x = [ I F 0 0 ] [ x 主 x 自由 ] = R N = 0 Rx=\begin{bmatrix} I&F\\0&0\end{bmatrix}\begin{bmatrix} x_{主}\\x_{自由}\end{bmatrix}=RN=0 Rx=[I0F0][xx自由]=RN=0,则零空间 N = [ − F I ] N=\begin{bmatrix} -F\\I\end{bmatrix} N=[FI]
7.3 特解
零空间中的各列即为特解。

8 Ax=b 的可解性和解的结构

8.1 Ax=b可解的条件
(1) 列空间角度:b属于A的列空间时成立;
(2) 线性组合角度:b是A各列的线性组合。

8.2 Ax=b的解
仍以第6节例子解释:
【例】 A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] , b = [ 1 5 6 ] \mathbf{A}=\begin{bmatrix} 1&2&2&2\\ 2&4&6&8\\ 3&6&8&10 \end{bmatrix},\mathbf{b}=\begin{bmatrix} 1\\5\\6 \end{bmatrix} A= 1232462682810 ,b= 156
(1)先对增广矩阵作高斯消元: [ 1 2 2 2 1 0 0 2 4 3 0 0 0 0 0 ] \begin{bmatrix} 1&2&2&2&1\\0&0&2&4&3\\0&0&0&0&0\end{bmatrix} 100200220240130
令自由元 x 2 = x 4 = 0 x_2=x_4=0 x2=x4=0,获得特解: [ − 2 0 3 2 0 ] \begin{bmatrix} -2\\0\\\frac{3}{2}\\0\end{bmatrix} 20230
(2)第6节已经给出:子空间为 [ x 1 x 2 x 3 x 4 ] = c [ − 2 1 0 0 ] + d [ 2 0 − 2 1 ] \begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}=c\begin{bmatrix} -2\\1\\0\\0\end{bmatrix}+d\begin{bmatrix} 2\\0\\-2\\1\end{bmatrix} x1x2x3x4 =c 2100 +d 2021
(3)故结果为特解+零空间的任意向量: [ x 1 x 2 x 3 x 4 ] = [ − 2 0 3 2 0 ] + c [ − 2 1 0 0 ] + d [ 2 0 − 2 1 ] \begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}=\begin{bmatrix} -2\\0\\\frac{3}{2}\\0\end{bmatrix}+c\begin{bmatrix} -2\\1\\0\\0\end{bmatrix}+d\begin{bmatrix} 2\\0\\-2\\1\end{bmatrix} x1x2x3x4 = 20230 +c 2100 +d 2021
8.3 A的秩与解的关系
对于 m × n m\times n m×n的矩阵 A \mathbf{A} A
1.列满秩(n<m):无自由元,因此有解且唯一或无解;
2.列满秩(n<m):有n-m个自由元,有无穷多解;
3.行列满秩(n=m):经过消元必可以化为单位阵,无自由元,有唯一解;
4.不满秩(r<n,r<m):不满足可解条件或有无穷多解(特解+零空间所有向量)。

9 线性相关性 基 维数

9.1 线性相关性
对于 m × n m\times n m×n的矩阵 A \mathbf{A} A
(一)线性组合定义法
线性无关:除全零系数外,没有其他线性组合方式可以得到零向量;
线性相关:除全零系数外,存在其他线性组合方式可以得到零向量。
p.s. 向量组中如果含有零向量,则向量组一定线性相关。
(二)零空间定义法
线性无关:矩阵 A \mathbf{A} A的零空间仅有零向量;
线性相关:矩阵 A \mathbf{A} A的零空间不仅仅有零向量。
(三)秩定义法
线性无关: A \mathbf{A} A的秩等于n;
线性相关: A \mathbf{A} A的秩小于n。

9.2 基
生成空间:把向量组的所有线性组合放到一个空间中,这个空间即为生成空间。
基:对于一组向量 v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn有如下性质:
(1) v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn线性无关;
(2) v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn能够生成整个空间。
性质:
R n \mathbb{R}^n Rn中的 n n n个向量构成基,则以这 n n n个向量构成的 n × n n\times n n×n必须可逆(即意味着任意两行、任意两列都线性无关)。

9.3 维数
上述定义中, R n \mathbb{R}^n Rn中的 n n n即为维数,即基向量的个数。

10 四个基本子空间

对于 m × n m\times n m×n的矩阵 A \mathbf{A} A
10.1 列空间 C ( A ) C(\mathbf{A}) C(A)
对于秩为 r r r,则列空间维数为 r r r,基向量有 r r r个。列变换前后矩阵的列空间不变。
10.2 零空间 N ( A ) N(\mathbf{A}) N(A)
对于秩为 r r r,则零空间维数为 n − r n-r nr,基向量有 n − r n-r nr个。
10.3 行空间 C ( A T ) C(\mathbf{A}^T) C(AT)
通过行变换后,获得秩为 r r r,则行空间维数为 r r r,基向量有 r r r个。行变换前后矩阵的行空间不变。
10.4 左零空间 N ( A T ) N(\mathbf{A}^T) N(AT)
实际上定义认为 y T A = 0 \mathbf{y}^T\mathbf{A}=0 yTA=0构成的 y \mathbf{y} y被称为左零空间。但也可转置该式,理解为 A T y = 0 \mathbf{A}^T\mathbf{y}=0 ATy=0
【例】求矩阵的左零空间: A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] \mathbf{A}=\begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix} A= 111212323111 .
(1)要确定 A \mathbf{A} A的左零空间维度,需算出行最简矩阵 R \mathbf{R} R
(2)计算 E A = R \mathbf{EA=R} EA=R:使用高斯-若尔当消元法:
[ A \mathbf{A} A I \mathbf{I} I] → \rightarrow [ R \mathbf{R} R E \mathbf{E} E]
得:
E = [ − 1 2 0 1 − 1 0 − 1 0 1 ] \mathbf{E}=\begin{bmatrix}-1&2&0\\1&-1&0\\-1&0&1\end{bmatrix} E= 111210001 R = [ 1 0 1 1 0 1 1 0 0 0 0 0 ] \mathbf{R}=\begin{bmatrix}1&0&1&1\\0&1&1&0\\0&0&0&0\end{bmatrix} R= 100010110100 .
发现 R \mathbf{R} R最下面一行为全零,则取出 E \mathbf{E} E的最下面一行,即:
[ − 1 0 1 ] [ 1 2 3 1 1 1 2 1 1 2 3 1 ] = [ 0 0 0 0 ] \begin{bmatrix}-1&0&1\end{bmatrix}\begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix}=\begin{bmatrix}0&0&0&0\end{bmatrix} [101] 111212323111 =[0000]
这样, [ − 1 0 1 ] \begin{bmatrix}-1&0&1\end{bmatrix} [101]就是矩阵 A \mathbf{A} A的左零空间的基向量。

11 矩阵空间 秩1矩阵

11.1 矩阵空间
假设所有 3 × 3 3\times3 3×3的矩阵构成一个空间 M M M,那么 M M M的合法的两个子空间是:对称阵 S S S、上三角阵 U U U。它们分别满足子空间的线性闭合。(两个对称阵相加仍然是对称阵,两个上三角相加仍是上三角)
S S S U U U存在相交区域的子空间,即:对角矩阵 D D D
11.1.1 矩阵空间的基与维数
M M M的基为 [ 1 0 0 0 0 0 0 0 0 ] \begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix} 100000000 [ 0 1 0 0 0 0 0 0 0 ] \begin{bmatrix}0&1&0\\0&0&0\\0&0&0\end{bmatrix} 000100000 [ 0 0 1 0 0 0 0 0 0 ] \begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix} 000000100 [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix}0&0&0\\0&0&0\\0&0&1\end{bmatrix} 000000001 ,它的维数为9。

S S S的基为 [ 1 0 0 0 0 0 0 0 0 ] \begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix} 100000000 [ 0 1 0 1 0 0 0 0 0 ] \begin{bmatrix}0&1&0\\1&0&0\\0&0&0\end{bmatrix} 010100000 [ 0 0 1 0 0 0 1 0 0 ] \begin{bmatrix}0&0&1\\0&0&0\\1&0&0\end{bmatrix} 001000100 [ 0 0 0 0 1 0 0 0 0 ] \begin{bmatrix}0&0&0\\0&1&0\\0&0&0\end{bmatrix} 000010000 [ 0 0 0 0 0 1 0 1 0 ] \begin{bmatrix}0&0&0\\0&0&1\\0&1&0\end{bmatrix} 000001010 [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix}0&0&0\\0&0&0\\0&0&1\end{bmatrix} 000000001 ,它的维数为6。

U U U的基为 [ 1 0 0 0 0 0 0 0 0 ] \begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix} 100000000 [ 0 1 0 0 0 0 0 0 0 ] \begin{bmatrix}0&1&0\\0&0&0\\0&0&0\end{bmatrix} 000100000 [ 0 0 1 0 0 0 0 0 0 ] \begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix} 000000100 [ 0 0 0 1 0 0 0 0 0 ] \begin{bmatrix}0&0&0\\1&0&0\\0&0&0\end{bmatrix} 010000000 [ 0 0 0 0 1 0 0 0 0 ] \begin{bmatrix}0&0&0\\0&1&0\\0&0&0\end{bmatrix} 000010000 [ 0 0 0 0 0 0 1 0 0 ] \begin{bmatrix}0&0&0\\0&0&0\\1&0&0\end{bmatrix} 001000000 ,它的维数为6。

D D D的基为 [ 1 0 0 0 0 0 0 0 0 ] \begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix} 100000000 [ 0 0 0 0 1 0 0 0 0 ] \begin{bmatrix}0&0&0\\0&1&0\\0&0&0\end{bmatrix} 000010000 [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix}0&0&0\\0&0&0\\0&0&1\end{bmatrix} 000000001 ,它的维数为3, d i m ( S ∩ U ) = 3 dim(S\cap U)=3 dim(SU)=3

11.1.2 “和”空间
定义空间 S + U S+U S+U,包含二者的所有线性组合。这里 S + U = M S+U=M S+U=M(注意这里不是并空间)。
有等式 d i m ( S ) + d i m ( U ) = d i m ( S ∩ U ) + d i m ( S + U ) dim(S)+dim(U)=dim(S\cap U)+dim(S+U) dim(S)+dim(U)=dim(SU)+dim(S+U)

11.1.3 应用:微分方程
解微分方程 d 2 y d x 2 + y = 0 \frac{d^2y}{dx^2}+y=0 dx2d2y+y=0
只考虑实数范围,对于二阶方程,找到两个特解: y = sin ⁡ x , y = cos ⁡ x y=\sin x, y=\cos x y=sinx,y=cosx,所有的解即为线性组合: y = c 1 cos ⁡ x + c 2 sin ⁡ x y=c_1\cos x+c_2\sin x y=c1cosx+c2sinx,该解空间满足线性运算封闭条件;维数为 2 2 2

11.2 秩1矩阵
【例】矩阵 A = [ 1 4 5 2 8 10 ] \mathbf{A}=\begin{bmatrix}1&4&5\\2&8&10\end{bmatrix} A=[1248510],该矩阵秩为1,可被分解为: A = [ 1 2 ] [ 1 4 5 ] \mathbf{A}=\begin{bmatrix}1\\2\end{bmatrix}\begin{bmatrix}1&4&5\end{bmatrix} A=[12][145]
因此秩为1的矩阵均可写为 A = U V T \mathbf{A}=\mathbf{U}\mathbf{V}^T A=UVT

所有同秩矩阵( R > 0 R>0 R>0)不能组成空间,因为其中必不含零向量。
R ( A + B ) ≤ R ( A ) + R ( B ) R(A+B)\leq R(A)+R(B) R(A+B)R(A)+R(B)

12 图和网络

本节主要以电路为例进行讲解,个人认为很有意思,建议去看原视频:
https://open.163.com/newview/movie/free?pid=M6V0BQC4M&mid=M6V2AIUTE
假定一个矩阵,它的每一行代表每条边,-1代表出发点,+1代表结束点;那么上图变为:
A = [ − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ] \mathbf{A}=\begin{bmatrix}-1&1&0&0\\0&-1&1&0\\-1&0&1&0\\-1&0&0&1\\0&0&-1&1\end{bmatrix} A= 10110110000110100011 .
实际意义1:
x \mathbf{x} x为各点电势,求解 A x = 0 \mathbf{Ax=0} Ax=0,得到的结果即为各点之间电势差为0时所需要满足的电势条件。
实际意义2:
y \mathbf{y} y为各边电流值,求解左零空间 A T y = 0 \mathbf{A^Ty=0} ATy=0,得到的结果即满足基尔霍夫电流定律。

14 正交向量和子空间

向量正交:两个向量满足 x T y = 0 \mathbf{x^Ty=0} xTy=0,则称为向量正交;特殊的,如果其中一个是零向量,则一定正交。
空间正交:空间中每个向量满足和另一个空间的每个向量均正交,则称为空间正交。
推论:两个空间若相交于非零向量位置,则这两个空间必不正交。
性质:矩阵的零空间和行空间是正交的,因为零空间的定义即为 [ R 0 R 1 . . . R n ] x = 0 \begin{bmatrix}R_0\\R_1\\...\\R_n\end{bmatrix}\mathbf{x=0} R0R1...Rn x=0
故称“零空间和行空间类似于将空间一分为二,对应两个正交的子空间”,因而二者互称为“正交补”。

14.1 无解方程的最优解
令最优解为 x ^ \mathbf{\hat{x}} x^,将方程 A x ^ = b \mathbf{A\hat{x}=b} Ax^=b改写为 A T A x ^ = A T b \mathbf{A^TA\hat{x}=A^Tb} ATAx^=ATb,然而 A T A \mathbf{A^TA} ATA并不总是可逆的,是否可逆的判据为: A \mathbf{A} A的列向量是否线性无关(结论)。

15 子空间投影

令p为b在a上的投影,则有p=xa(x为倍数),且有:
a T ( b − p ) = a T ( b − a x ) = 0. a^T(b-p)=a^T(b-ax)=0. aT(bp)=aT(bax)=0.
解得 x = a T b a T a x=\frac{a^Tb}{a^Ta} x=aTaaTb,则 p = a T b a T a a = a a T a T a b = P b p=\frac{a^Tb}{a^Ta}a=a\frac{a^T}{a^Ta}b=Pb p=aTaaTba=aaTaaTb=Pb
其中, P = a a T a T a P=a\frac{a^T}{a^Ta} P=aaTaaT,称为投影矩阵。
投影矩阵的性质: P T = P ; P 2 = P P^T=P;P^2=P PT=P;P2=P

上述a如果变为向量 a 1 , a 2 a_1,a_2 a1,a2构成的平面 A = [ a 1 , a 2 ] A=[a_1,a_2] A=[a1,a2],相应的投影矩阵为 P = A ( A T A ) − 1 A T P=A(A^TA)^{-1}A^T P=A(ATA)1AT,该矩阵也有性质: P T = P ; P 2 = P P^T=P;P^2=P PT=P;P2=P

16 最小二乘法

【例】求三个点(1,1)(2,2)(3,2)拟合的直线方程:
设拟合直线方程:y=C+Dx,代入坐标得: [ 1 1 1 2 1 3 ] [ C D ] = [ 1 2 2 ] \begin{bmatrix}1&1\\1&2\\1&3\end{bmatrix}\begin{bmatrix}C\\D\end{bmatrix}=\begin{bmatrix}1\\2\\2\end{bmatrix} 111123 [CD]= 122 ,该方程无解。
借助之前的无解求最优解的方法: A T b = A T A x ^ A^Tb=A^TA\hat{x} ATb=ATAx^
解得, C = 2 3 , D = 1 2 C=\frac{2}{3},D=\frac{1}{2} C=32,D=21.

17 正交矩阵

标准正交向量:长度为1的正交向量。
标准正交矩阵:将标准正交向量组按列排在同一个矩阵中。
对于一个标准正交矩阵,满足 Q T Q = [ 1 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0 0 . . . 1 ] = 1 Q^TQ=\begin{bmatrix}1&0&...&0\\0&1&...&0\\0&0&...&0\\0&0&...&1\end{bmatrix}=1 QTQ= 10000100............0001 =1
Q Q Q是方阵时,称为正交矩阵,它具有性质: Q T = Q − 1 Q^T=Q^{-1} QT=Q1
所有的正交矩阵不要忘记单位化向量。
17.1 应用回顾:
1.投影矩阵:投影矩阵 P = A ( A T A ) − 1 A T P=A(A^TA)^{-1}A^T P=A(ATA)1AT,当Q是标准正交矩阵时, P = Q Q T P=QQ^T P=QQT,特别的,当Q是方阵(正交阵)时, P = 1 P=1 P=1。同样可以验证投影矩阵性质: P T = P , P 2 = P P^T=P,P^2=P PT=P,P2=P
2.拟合方程: A T b = A T A x A^Tb=A^TAx ATb=ATAx,若 A = Q A=Q A=Q,则 x = Q T b x=Q^Tb x=QTb
意义是若已知标准正交基,则b在 q i q_i qi基的投影就是 b q i T bq_i^T bqiT
17.2 Gram-Schmidt正交化
任取三个线性无关的向量 a , b , c a,b,c a,b,c,先求相应的正交向量组:
首先确定 a a a为其中一个正交向量, A = a A=a A=a
那么 b b b对应的应去掉与 a a a共线的部分, B = b − A T b A T A A B=b-\frac{A^Tb}{A^TA}A B=bATAATbA
那么 c c c对应的应去掉与 a , b a,b a,b共线的部分, C = c − B T c B T B b − A T c A T A A C=c-\frac{B^Tc}{B^TB}b-\frac{A^Tc}{A^TA}A C=cBTBBTcbATAATcA
最后进行单位化, A ∣ A ∣ , B ∣ B ∣ , C ∣ C ∣ \frac{A}{|A|},\frac{B}{|B|},\frac{C}{|C|} AABBCC即为所求。
这样分解后得到的正交向量组构成的矩阵是正交矩阵,因而有 A = Q R A=QR A=QR,其中 R R R是上三角矩阵。

18 行列式

性质九:|A|不为0当且仅当A可逆;
性质十:|AB|=|A||B|。
18.1 代数余子式
∣ A ∣ = a 11 C 11 + a 12 C 12 + . . . a 1 n C 1 n . |A|=a_{11}C_{11}+a_{12}C_{12}+...a_{1n}C_{1n}. A=a11C11+a12C12+...a1nC1n.

20 逆矩阵

20.1 逆矩阵的伴随矩阵求法 A − 1 = 1 ∣ A ∣ C T A^{-1}=\frac{1}{|A|}C^T A1=A1CT
其中 C T C^T CT为伴随矩阵,由各个元素的代数余子式组成。
【例】二维矩阵 [ a b c d ] − 1 = 1 a d − b c [ d − b − c a ] \begin{bmatrix}a&b\\c&d\end{bmatrix}^{-1}=\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\end{bmatrix} [acbd]1=adbc1[dcba]
20.2 克莱姆法则
A x = b ⇒ x = A − 1 b = 1 ∣ A ∣ C T b Ax=b\Rightarrow x=A^{-1}b=\frac{1}{|A|}C^Tb Ax=bx=A1b=A1CTb.
这里 x i = ∣ C T b i ∣ ∣ A ∣ x_i=\frac{|C^Tb_i|}{|A|} xi=ACTbi,分子可以化为 [ b 1 a 12 . . . a 1 n b 1 a 22 . . . a 2 n b 1 a 32 . . . a 3 n b 1 a 42 . . . a 4 n ] \begin{bmatrix}b_1&a_{12}&...&a_{1n}\\b_1&a_{22}&...&a_{2n}\\b_1&a_{32}&...&a_{3n}\\b_1&a_{42}&...&a_{4n}\end{bmatrix} b1b1b1b1a12a22a32a42............a1na2na3na4n 的第一列展开。
20.3 体积
行列式的绝对值是一个六面体的体积。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值