普利姆算法
介绍
普利姆算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是极小连通子图
普利姆算法步骤
1、设G=(V,E)是连通图,T=(U,D)是最小生成树,U,V是顶点集合,E,D是边的集合。
2、若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,顶点标记v的visit[u]=1
3、若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visit[vj]=1
4、重复步骤2,直到U与V相等,即所有顶点都被标记访问过,此时D中有n-1条边
普利姆算法实践(修路问题)
有7个村庄(A,B,C,D,E,F,G),现在需要把7个村庄连通,各个村庄的距离用边线表示权,如何修路保证各个村庄都能连通,并且总的修建公路里程最短。
package algorithm;
/**
* @author taoke
* @desc 普利姆算法(修路问题)
* @email 1504806660@qq.com
* @date 2022/1/25
*/
public class Prim {
//最大值
private static final int N = 65535;
//顶点
private static final char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//临界矩阵,N表示不通
private static final int[][] matrix = {
{0, 5, 7, N, N, N, 2},
{5, 0, N, 9, N, N, 3},
{7, N, 0, N, 8, N, N},
{N, 9, N, 0, N, 4, N},
{N, N, 8, N, 0, 5, 4},
{N, N, N, 4, 5, 0, 6},
{2, 3, N, N, 4, 6, 0}
};
/**
* 普利姆算法
*
* @param v 从第几个顶点开始
*/
public static void prim(int v) {
//所有顶点是否被访问过
boolean[] visited = new boolean[vertex.length];
//把当前这个顶点标记为已访问
visited[v] = true;
//h1,h2表示两个顶点
int h1 = -1;
int h2 = -1;
//初始值
int minWeight = N;
//顶点数量为vertex个,普利姆算法生成vertex-1条边
for (int k = 1; k < vertex.length; k++) {
//确定每次生成的子图和哪个顶点的距离最近
for (int i = 0; i < vertex.length; i++) {
for (int j = 0; j < vertex.length; j++) {
if (visited[i] && !visited[j] && matrix[i][j] < minWeight) {
//替换minWeight(寻找已访问过的节点和未访问过的节点,权值最小的边)
minWeight = matrix[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条最小的边
System.out.println("边<" + vertex[h1] + "," + vertex[h2] + ">权值:" + minWeight);
//标记顶点为已访问
visited[h2] = true;
//重新设置为最大值
minWeight = N;
}
}
public static void main(String[] args) {
prim(0);
}
}