常用的十大算法-普利姆算法

普利姆算法

介绍

普利姆算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是极小连通子图

普利姆算法步骤

1、设G=(V,E)是连通图,T=(U,D)是最小生成树,U,V是顶点集合,E,D是边的集合。
2、若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,顶点标记v的visit[u]=1
3、若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visit[vj]=1
4、重复步骤2,直到U与V相等,即所有顶点都被标记访问过,此时D中有n-1条边

普利姆算法实践(修路问题)

有7个村庄(A,B,C,D,E,F,G),现在需要把7个村庄连通,各个村庄的距离用边线表示权,如何修路保证各个村庄都能连通,并且总的修建公路里程最短。

在这里插入图片描述

package algorithm;


/**
 * @author taoke
 * @desc 普利姆算法(修路问题)
 * @email 1504806660@qq.com
 * @date 2022/1/25
 */
public class Prim {

    //最大值
    private static final int N = 65535;
    
    //顶点
    private static final char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    
    //临界矩阵,N表示不通
    private static final int[][] matrix = {
            {0, 5, 7, N, N, N, 2},
            {5, 0, N, 9, N, N, 3},
            {7, N, 0, N, 8, N, N},
            {N, 9, N, 0, N, 4, N},
            {N, N, 8, N, 0, 5, 4},
            {N, N, N, 4, 5, 0, 6},
            {2, 3, N, N, 4, 6, 0}
    };

    /**
     * 普利姆算法
     *
     * @param v 从第几个顶点开始
     */
    public static void prim(int v) {
        //所有顶点是否被访问过
        boolean[] visited = new boolean[vertex.length];
        //把当前这个顶点标记为已访问
        visited[v] = true;
        //h1,h2表示两个顶点
        int h1 = -1;
        int h2 = -1;
        //初始值
        int minWeight = N;
        //顶点数量为vertex个,普利姆算法生成vertex-1条边
        for (int k = 1; k < vertex.length; k++) {
            //确定每次生成的子图和哪个顶点的距离最近
            for (int i = 0; i < vertex.length; i++) {
                for (int j = 0; j < vertex.length; j++) {
                    if (visited[i] && !visited[j] && matrix[i][j] < minWeight) {
                        //替换minWeight(寻找已访问过的节点和未访问过的节点,权值最小的边)
                        minWeight = matrix[i][j];
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            //找到一条最小的边
            System.out.println("边<" + vertex[h1] + "," + vertex[h2] + ">权值:" + minWeight);
            //标记顶点为已访问
            visited[h2] = true;
            //重新设置为最大值
            minWeight = N;
        }
    }

    public static void main(String[] args) {
        prim(0);
    }
}

计算结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值