L2-008. 最长对称子串

没看懂。。。  先转了,留着以后看看……


转于:http://blog.csdn.net/yjf3151731373/article/details/51423812

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <sstream>
using namespace std;
#define N 100000
int p[N];
char str[N];

int main()
{
    gets(str);
    int len=strlen(str);
    for(int i=len;i>=0;i--)
    {
        str[i+i+2]=str[i];
        str[i+i+1]='#';
    }
    str[0]='*';
    int id=0, maxt=0;
    for(int i=2;i<2*len+1;i++)
    {
        if(id+p[id]>i)
        {
            p[id]=min(p[id+id-i],p[id]+id-i);
        }
        else
        {
            p[i]=1;
        }
        while(str[i-p[i]]==str[i+p[i]])
        {
            p[i]++;
        }
        if(i+p[i]>id+p[id])
        {
            id=i;
        }
        if(p[i]>=maxt)
        {
            maxt=p[i];
        }
    }
    cout<<maxt-1<<endl;
    return 0;
}


下面借鉴了大神的思维方式用DP的最优解解决,方法真的很巧妙

manacher算法:

定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长

将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i]就是最长回文串长度,则问题是如何去求p[i]?

由于s是从前扫到后的,所以需要计算p[i]时一定已经计算好了p[1]....p[i-1]

假设现在扫描到了i+k这个位置,现在需要计算p[i+k]

定义maxlen是i+k位置前所有回文串中能延伸到的最右端的位置,即maxlen=p[i]+i;//p[i]+i表示最大的

分两种情况:

1.i+k这个位置不在前面的任何回文串中,即i+k>maxlen,则初始化p[i+k]=1;//本身是回文串

然后p[i+k]左右延伸,即while(s[i+k+p[i+k]] == s[i+k-p[i+k]])++p[i+k]

2.i+k这个位置被前面以位置i为中心的回文串包含,即maxlen>i+k

这样的话p[i+k]就不是从1开始


由于回文串的性质,可知i+k这个位置关于i与i-k对称,

所以p[i+k]分为以下3种情况得出

//黑色是i的回文串范围,蓝色是i-k的回文串范围,






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值