在前一篇讲解插入排序算法的时候其实我们可以发现插入排序的性能已经很高了,但是依旧存在一些问题:
假设现在我们有一个数组arr={2,3,4,5,6,1},这个时候需要插入最后的数1(最小的一个数),过程如下:
当需要插入的数是较小的数的时候,后移的次数明显增多,当这个数组很大的时候,对效率的影响就很明显了;
希尔排序介绍
希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序;
基本思想
希尔排序是把记录按下标的一定增量分组;对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1的时,整个文件恰被分成一组,算法便终止;
图解
【交换法】代码实现
public static void main(String[] args) {
int arr[] = {12,32,2,4,9,17,42,11};
System.out.println(Arrays.toString(arr) +"希尔排序后的结果为:");
getShellSort(arr);
}
public static void getShellSort(int arr [] ){
int oldVal = 0;
for (int gap = arr.length/2; gap >0 ; gap=gap/2) {
for (int i = gap; i < arr.length; i++) {
for (int j = i-gap; j >=0; j=j-gap) {
if (arr[j+gap]<arr[j]){
oldVal=arr[j+gap];
arr[j+gap]=arr[j];
arr[j]=oldVal;
}
}
}
}
for (int x = 0; x < arr.length; x++) {
System.out.print(arr[x]+" ");
}
System.out.println();
}
代码简述
1.在第一层循环中,其实就是进行分组操作,这个gap即是当前数组被分了多少组,同样也是步长数(也就是第一个元素和要比较的下个元素之间的间隔)
2.第二层循环其实就是遍历每个组的每个元素;
3.在第三层循环中去判断当前元素是否大于加上步长后的那个元素(当前组的下一个元素),如果大于则进行交换,然后再往前移动一个步长的位置(j=j-gap)继续循环;
性能测试
还是添加50000个随机数的数组,统计耗时如下:
因为插入排序针对的是索引,因此在测试后我们发现这样做比插入排序还要慢!因此这样改进就没有意义了
【交换法】存在的性能问题
我们在内层循环中进行交换操作的时候,是十分损耗性能的,并且使用这种方法需要嵌套三层for循环,肯定是不如插入排序的,因此我们需要对其进行改进;
【移位法】代码实现
for (int gap = arr.length/2; gap>0; gap=gap/2) {
for (int i = gap; i <arr.length; i++) {
int index = i;
int temp=arr[index];
if (arr[index]<arr[index-gap]){
while (index-gap>=0&&temp<arr[index-gap]){
//开始后移
arr[index]=arr[index-gap];
index=index-gap;
}
//当退出循环后给temp找到新的位置,插入进去
arr[index]=temp;
}
}
}
性能测试
还是添加50000个随机数的数组,统计耗时如下,我们会发现它就变得特别快了, 这才是最终的希尔排序,它的时间复杂度是O(nlogn),解决了插入排序的问题,效率肯定也就更高;