ECO目标跟踪: Efficient Convolution Operators for Tracking(翻译+笔记)

本文提出了一种新型的高效卷积操作(ECO),通过分解卷积算子减少参数、生成紧凑的训练样本模型和采用保守模型更新策略,解决了DCF跟踪器的过拟合和计算复杂问题。实验表明,ECO在VOT2016挑战中超越C-COT,同时提供20倍加速,即使使用深度特征也能保持60Hz速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ECO: Efficient Convolution Operators for Tracking
摘要
近年来,基于判别相关滤波器 (DCF) 的方法显着提高了跟踪的最新技术水平。 然而,在追求不断提高的跟踪性能的过程中,它们的特征速度和实时能力逐渐减弱。 此外,越来越复杂的模型具有大量可训练的参数,引入了严重过拟合的风险。 在这项工作中,我们解决了计算复杂性和过度拟合问题背后的关键原因,目的是同时提高速度和性能。
我们重新审视核心 DCF 公式并引入:(i)分解卷积算子,它大大减少了模型中的参数数量; (ii) 训练样本分布的紧凑生成模型,可显着降低内存和时间复杂度,同时提供更好的样本多样性; (iii) 一种具有改进鲁棒性和降低复杂性的保守模型更新策略。 我们对四个基准进行了全面的实验:VOT2016、UAV123、OTB-2015 和 Temple Color。 当使用昂贵的深度特征时,与 VOT2016 挑战中排名最高的方法 [12] 相比,我们的跟踪器提供了 20 倍的加速,并在预期平均重叠方面实现了 13.0% 的相对增益。 此外,我们的快速变体使用手工制作的特征,在单个 CPU 上以 60 Hz 的频率运行,同时在 OTB-2015 上获得 65.0% 的 AUC。
1.Introduction
通用视觉跟踪是计算机视觉中的基本问题之一。 这是在仅给定初始状态的情况下估计图像序列中目标轨迹的任务。 在线视觉跟踪在众多实时视觉应用中起着至关重要的作用,例如智能监控系统、自动驾驶、无人机监控、智能交通控制和人机界面。 由于跟踪的在线性质,在实时视觉系统的硬计算约束下,理想的跟踪器应该是准确和健壮的。
近年来,基于跟踪基准的有识别能力的相关性过滤器(DCF)方法在准确性和鲁棒性方面显示出持续的性能改进 [23, 37]。 基于 DCF 的跟踪性能的最新进展是由使用多维特征 [13, 15]、稳健的尺度估计 [7, 11]、非线性内核 [20]、长期记忆组件 [28]、 复杂的学习模型 [3, 10] 和减少边界效应 [9, 16]。 然而,这些准确性的提高是以显着降低跟踪速度为代价的。 例如,Bolme 等人的开创性 MOSSE 跟踪器。 [4] 在 VOT2016 挑战 [23] 中比最近排名第一的 DCF 跟踪器 C-COT [12] 快约 1000 倍,但准确率只有一半。
如上所述,DCF 跟踪性能的进步主要归功于强大的特征和复杂的学习公式 [8, 12, 27]。 这导致了更大的模型,需要数十万个可训练的参数。另一方面,这种复杂的大型模型有严重的过拟合风险(见图1)。在本文中,我们解决了当前DCF跟踪器的过拟合问题,同时恢复其标志性的实时能力。
图 1. 我们的方法 ECO 与基线 C-COT [12] 在三个示例序列上的比较。 在所有三种情况下,CCOT 都存在对目标特定区域的严重过度拟合。 在尺度变化(顶行)、变形(中行)和平面外旋转(底行)的情况下,这会导致目标估计不佳。 我们的 ECO 跟踪器成功解决了过度拟合的原因,从而更好地泛化了目标外观,同时实现了 20 倍的加速。

图 1. 我们的方法 ECO 与基线 C-COT [12] 在三个示例序列上的比较。 在所有三种情况下,CCOT 都存在对目标特定区域的严重过度拟合。 在尺度变化(顶行)、变形(中行)和平面外旋转(底行)的情况下,这会导致目标估计不佳。 我们的 ECO 跟踪器成功解决了过度拟合的原因,从而更好地泛化了目标外观,同时实现了 20 倍的加速。
1.1. Motivation
我们确定了导致最先进的 DCF 跟踪器中计算复杂性增加和过度拟合的三个关键因素。
模型大小:高维特征图的集成,例如深度特征,导致外观模型参数的数量急剧增加,通常超出输入图像的维度。 例如,C-COT [12] 在模型的在线学习过程中不断更新大约 800,000 个参数。 由于跟踪中训练数据的固有稀缺性,这样的高维参数空间容易出现过拟合。 此外,高维度导致计算复杂度的增加,导致跟踪速度变慢。
训练集大小:最先进的 DCF 跟踪器,包括 C-COT,由于依赖迭代优化算法,需要存储大量的训练样本集。 然而,在实践中,内存大小是有限的,尤其是在使用高维特征时。 维持可行内存消耗的典型策略是丢弃最旧的样本。 然而,这可能会导致对最近的外观变化过度拟合,从而导致模型漂移(见图 1)。 此外,大型训练集会增加计算负担。
模型更新:大多数基于 DCF 的跟踪器应用持续学习策略,其中模型在每一帧中都被严格更新。 相反,最近的作品使用 Siamese 网络 [2],在没有任何模型更新的情况下显示了令人印象深刻的性能。 受这些发现的启发,我们认为最先进的 DCF 中的连续模型更新过度且对由例如尺度变化、变形和平面外旋转引起的突然变化敏感(见图 1)。 由于过度拟合最近的帧,这种过度的更新策略会导致较低的帧速率和鲁棒性的降低。
1.2. Contributions
我们提出了一种新颖的公式,可以解决先前列出的最先进 DCF 跟踪器的问题。 作为我们的第一个贡献,我们引入了一个分解卷积算子,它极大地减少了 DCF 模型中的参数数量。 我们的第二个贡献是训练样本空间的紧凑生成模型,它有效地减少了学习中的样本数量,同时保持了它们的多样性。 作为我们的最后贡献,我们引入了一种有效的模型更新策略,同时提高了跟踪速度和鲁棒性。
综合试验表明,该方法同时提高了跟踪性能和速度,因此提出了四个最先进的基准:VOT2016, UAV123, OTB-2015, and Temple-Color.与基线相比,我们的方法在学习中显着减少了 80% 的模型参数数量、90% 的训练样本和 80% 的优化迭代。 在 VOT2016 上,我们的方法在挑战中优于排名最高的跟踪器 C-COT [12],同时实现了显着更高的帧速率。 此外,我们提出了我们的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值