示例1: 返回各时刻状态
import tensorflow as tf
import numpy as np
import keras
from keras.layers import ConvLSTM2D
lstm_input = np.random.random((4,6,30,30,3)).astype(np.float32)
lstm_input = tf.convert_to_tensor(lstm_input)
lstm_out1 = ConvLSTM2D(filters=1,kernel_size=[5,5],strides=(1,1),padding='valid',activation='relu',
input_shape=(6,30,30,3),return_sequences=True)(lstm_input)
lstm_out2 = ConvLSTM2D(filters=2,kernel_size=[5,5],strides=(1,1),padding='valid',activation='relu',
return_sequences=True)(lstm_out1)
lstm_out3 = ConvLSTM2D(filters=3,kernel_size=[5,5],strides=(1,1),padding='valid',activation='relu',
return_sequences=True)(lstm_out2)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
lstm_out1_,lstm_out2_,lstm_out3_ = sess.run([lstm_out1,lstm_out2,lstm_out3])
print(lstm_out1_.shape)
print(lstm_out2_.shape)
print(lstm_out3_.shape)
"""
返回:
(4, 6, 26, 26, 1)
(4, 6, 22, 22, 2)
(4, 6, 18, 18, 3)
"""
备注:
return_sequences: 默认是False,控制LSTM的输出:
- False: 仅返回最后一个时刻的状态(hidden_state),shape = [B,H,W,C],是一个4维张量
- True: 返回所有时刻的输出(hidden_state),shape = [B,Clip_len,H,W,C],是一个5维张量
示例2: 同时返回各时刻状态与最后一个时刻的state(包含state.h,state.c)
用return_state=True控制
import tensorflow as tf
import numpy as np
import keras
from keras.layers import ConvLSTM2D
lstm_input = np.random.random((4,6,30,30,3)).astype(np.float32)
lstm_input = tf.convert_to_tensor(lstm_input)
lstm_out,state_h,state_c = ConvLSTM2D(filters=1,kernel_size=[5,5],strides=(1,1),padding='valid',activation='relu',
batch_input_shape=(-1,6,30,30,3),return_sequences=False,return_state=True)(lstm_input)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
lstm_out_,state_h_,state_c_= sess.run([lstm_out,state_h,state_c])
print(lstm_out_==state_h_)
print(lstm_out_.shape)
print(state_h_.shape)
print(state_c_.shape)
"""
返回:
[ True]]]]
(4, 26, 26, 1)
(4, 26, 26, 1)
(4, 26, 26, 1)
"""
综上:
return_sequences: 决定是否返回所有时刻的状态
return_state:决定是否返回最后一个时刻的cell状态,由示例2结果可见,最后一个时刻的state = [h,c]
注意:在keras 中文文档中,在介绍ConvLSTM2D时,没有介绍 return_state 参数,该参数在LSTM的介绍中介绍,但是在ConvLSTM2D中通用。。。自己差点以为ConvLSTM2D中没有这个功能。。。