机器学习笔记:监督学习-回归与分类(一)

本文介绍了机器学习的基本概念,包括有监督学习、无监督学习和强化学习。重点讨论了有监督学习中的回归问题,特别是单(双)变量线性回归模型,涵盖代价函数和梯度下降的原理,为理解机器学习的基石提供基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一.Machine Learning概念

1、有监督学习

2、无监督学习

3、强化学习

 二.单(双)变量线性回归模型

1.代价函数

2.梯度下降


一.Machine Learning概念

机器学习基于学习方式可以分为三类:

1、有监督学习


监督学习就是有标签的,监督学习主要做两类工作,分别是回归和分类,回归的例子,比如房价预测,最后从大量散点里回归出一条函数曲线,然后再有输入就可以用这个函数来给出一个预测输出,回归问题的输出可能是无限的;而分类就比较符合字眼的意思,比如把猫狗的图片分成两类,再比如检测乳腺癌片子,是良性还是恶性,分类问题的输出是有限的。学习结果为函数。


2、无监督学习


有监督学习有输入x和标签y,而无监督学习有输入x但是没有标签y,学习结果为类别。主要有以下几类:
聚类算法:没有标签的数据并尝试将它们自动分组到集群中,即算法在没有标签的前提下自己去发现数据中的不同的结构,自己进行分类。比如新闻网站每天的热点新闻中的一些关键词可能每天都有变化,这就能用到无监督学习,比如很多条新闻中都有“大熊猫跳舞”这个字眼,那么算法可能就会将这些新闻分为一类。又如根据客户一些个人信息将客户分为不同类别。除了聚类算法之外,还有异常检测和降维这两大类的工作。


3、强化学习


强化学习就是学习”做什么才能使得数值化的收益信号最大化”.学习者不会被告知应该采取什么动作,而是必须自己通过尝试去发现哪些动作会产生最丰厚的收益.试错和延迟收益是强化学习两个最重要最显著的特征。
强化学习与有监督学习不同: 有监督学习是从外部监督者提供的带标注训练集中进行学习.每一个样本都是情境和标注的描述, 而强化学习是从交互中学习。
强化学习也与无监督学习不同:无监督学习是一个典型的寻找未标注数据中隐含结构的过程, 强化学习的目标是最大化收益信号而不是找出数据的隐含结构。

 二.单(双)变量线性回归模型


1.代价函数


这意味着将一条直线拟合到您的数据中。

 

以预测房价的例子说一下,上图左侧是房屋大小对应的房屋价格表,右边是定义的一些常用术语,注意右下角那个x和y的右上角的(i)不是次幂,i是几就代表是第几组输入数据。

y-hat是一个估计值,他可能是一个真实值,也可能不是一个真实值;而y是一个训练集中的真实值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值