POJ 1190 生日蛋糕 (dfs + 神剪枝)

22 篇文章 0 订阅
3 篇文章 0 订阅

POJ 1190


有三处剪枝,作为渣渣表示这题对我来说很有难度。题解也是看了好久才理解。


首先,minv[i] 表示从上往下数第i层以及第i层以上的最小总体积,mins[i]表示从上往下数第i层以及第i层以上的最小总面积。仔细想想可以知道每层的半径和高度都取这一层的层数即可得到最小值。

然后具体见代码。

参考博客:http://www.cnblogs.com/rainydays/p/3523162.html    感谢!是我看过的最严谨最好理解的版本


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int N, M;
const int inf = 0x3f3f3f3f;
int minv[25], mins[25];
int ans;
void dfs(int r, int h, int layer, int v, int s) {
	if(layer == 0) {
		if(v == N && ans > s) ans = s;
		return;
	}
	if(N - v < minv[layer]) return;//剪枝1:总体积减去蛋糕当前层以下的层的总体积
					//小于上面的层所能构成的最小体积 
	if(ans - s < mins[layer]) return;//剪枝2:当前得到的最优解减去蛋糕当前层以下的层的总面积
					//小于上面的层所能构成的最小面积 
	if(s + 2 * (N - v) / r > ans) return;//剪枝3:2 * (N - v) / r 表示剩下的体积能组成最小面积
						//的极限情况,可以证明,同样的体积组成一个大圆柱体和组成
						//多个比一个大圆柱体小的小圆柱体相比,前者的表面积比后者
						//要小,所以这种表面积最小的情况再加上本层以下的确定的表
						//面积s如果是大于已知最优解s,那么最终结果一定不会比ans小
						//返回 。(难理解) 
	int i, j;
	for(i = r; i >= layer; i--) {
		if(layer == M) s = i * i; //第一次要加上底面的面积 
		int maxh = min(h, (N - v - minv[layer - 1]) / i / i); //后者为本层高度最高的情况,
									//但再高也不能高过最高高度h 
		for(j = maxh; j >= layer; j--) {
			dfs(i - 1, j - 1, layer - 1, v + i * i * j, s + 2 * i * j);
		}
	}
}
int main() {
	int i;
	minv[0] = mins[0] = 0;
	for(i = 1; i <= 20; i++) {
		minv[i] = minv[i - 1] + i * i * i;
		mins[i] = mins[i - 1] + 2 * i * i;
	}
	while(~scanf("%d %d", &N, &M)) {
		ans = inf;
		dfs((int)sqrt(N), N, M, 0, 0);   //第一和第二个参数分别指最大的半径和最大的高度  
		if(ans == inf) printf("0\n");
		else printf("%d\n", ans);
	}
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值