生命不息,奋斗不止!
@author stormma
@date 2017/10/21
题目
Given n, how many structurally unique BST’s (binary search trees) that store values 1…n?
For example
Given n = 3, there are a total of 5 unique BST’s.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
思路分析
一般的计数问题,多半和dp有关,这道题也不例外,我们既然知道是个dp的题目,那么下来就开始推状态转移方程。假如此时的n = 4, 那么root结点有可能是1~4的任何一个值,我们从root节点=1开始考虑:
假设count(1, 2, 3)
是1 2 3
组成的Binary Tree的个数
- 如果
root = 1
,那么这个Binary Tree肯定没有左子树,那么右子树的结点个数应该是n - 1 ==> 4 - 1 = 3
个,2 3 4
这三个结点组成的树的个数又和1 2 3
这个三个数组成数的个数是相同的,所以此时的种类数为1 * count(2 3 4) = 1 * count(1 2 3) = 1 * 5 = 5
。 - 如果root结点是2, 那么左子树肯定有1个结点
1
,右子树肯定有4 - 2
2个结点(3, 4),那么此时root=2时候构成的Binary Tree的个数就是1 * count(3 4) = 1 * count (2 3) = 1 * count(1 * 2) = 2
。 - 如果
root = 3
,同上,count(1 2 ) * count(4) = count(1 2) * count(1) = 2 * 1 = 2
个。 - 如果
root = 4
,同上,count(1 2 3) * count(5) = count( 1 2 3) * coutn(1) = 5 * 1 = 5
个。
综上,n = 4
⇒ ans = 14
,那么这样状态转移方式就很明确了。
代码实现
public class Question96 {
static class Solution {
public int numTrees(int n) {
if (n == 0 || n == 1 || n == 2) {
return n;
}
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
}
}