leetcode 96. Unique Binary Search Trees

生命不息,奋斗不止!

@author stormma
@date 2017/10/21

题目

Given n, how many structurally unique BST’s (binary search trees) that store values 1…n?

For example
Given n = 3, there are a total of 5 unique BST’s.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

思路分析
一般的计数问题,多半和dp有关,这道题也不例外,我们既然知道是个dp的题目,那么下来就开始推状态转移方程。假如此时的n = 4, 那么root结点有可能是1~4的任何一个值,我们从root节点=1开始考虑:

假设count(1, 2, 3)1 2 3组成的Binary Tree的个数

  1. 如果root = 1,那么这个Binary Tree肯定没有左子树,那么右子树的结点个数应该是n - 1 ==> 4 - 1 = 3个,2 3 4这三个结点组成的树的个数又和1 2 3这个三个数组成数的个数是相同的,所以此时的种类数为1 * count(2 3 4) = 1 * count(1 2 3) = 1 * 5 = 5
  2. 如果root结点是2, 那么左子树肯定有1个结点1,右子树肯定有4 - 22个结点(3, 4),那么此时root=2时候构成的Binary Tree的个数就是1 * count(3 4) = 1 * count (2 3) = 1 * count(1 * 2) = 2
  3. 如果root = 3,同上,count(1 2 ) * count(4) = count(1 2) * count(1) = 2 * 1 = 2个。
  4. 如果root = 4,同上,count(1 2 3) * count(5) = count( 1 2 3) * coutn(1) = 5 * 1 = 5个。

综上,n = 4ans = 14,那么这样状态转移方式就很明确了。

代码实现

public class Question96 {

    static class Solution {
        public int numTrees(int n) {
            if (n == 0 || n == 1 || n == 2) {
                return n;
            }
            int[] dp = new int[n + 1];
            dp[0] = 1;
            dp[1] = 1;
            dp[2] = 2;
            for (int i = 3; i <= n; i++) {
                for (int j = 1; j <= i; j++) {
                    dp[i] += dp[j - 1] * dp[i - j];
                }
            }
            return dp[n];
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值