【题目描述】
给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
- 数据1:与样例等价,测试基本正确性;
- 数据2:102个随机整数;
- 数据3:103个随机整数;
- 数据4:104个随机整数;
- 数据5:105个随机整数;
【输入格式】
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
【输出格式】
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
【输入样例】
6
-2 11 -4 13 -5 -2
【输出样例】
20
思路1 :暴力求解,把所有的连续子列和全部都算出来,然后找出最大的那一个;代码如下:
#include<iostream>
using namespace std;
int a[100100];
int main(){
int n, m=0;
cin >> n;
for(int i = 0; i < n; i++){
cin >> a[i];
}
for(int i = 0; i < n; i++){
for(int j = i; j <= n; j++){
int sum = 0;
for(int k = i; k <= j; k++){
sum += a[k];
}
m = max(sum, m);
}
}
if(m < 0) cout << 0;
else cout << m;
return 0;
}
很显然,这个算法的复杂度为 O(n^3),肯定会超时,那么,该如何降低复杂度呢 ?
思路2: 已经知道当前从 i 到 j 的和,要计算下一个 j 的时候,就没有必要从头开始往后加;当 j 增加了 1 的时候,其实只要在前面那个 i 到 j 的部分和后面加一个元素就好了,这样,k循环完全可以省略,此时,复杂度降为 O(n^2);
#include<iostream>
using namespace std;
int a[100100];
int main(){
int n, m=0;
cin >> n;
for(int i = 0; i < n; i++){
cin >> a[i];
}
for(int i = 0; i < n; i++){
int sum = 0;
for(int j = i; j <= n; j++){
sum += a[j];
m = max(sum, m);
}
}
if(m < 0) cout << 0;
else cout << m;
return 0;
}
复杂度为O(n^2),其实也非常大,那么还可以优化吗?
思路3:分而治之:大概思路就是把一个比较大的复杂的问题切分成小的块,然后分头去解决它们,最后再把结果合并起来,这就是“分而治之”。
首先假设我们的问题是放在一个数组里面的,这个算法第一步是先“分”,也就是把这个数组从中间一分为二,然后递归地去解决左右两边的问题,递归地去解决左边的问题,得到左边的一个最大子列和,递归地去解决右边的问题,得到右边的一个最大子列和,这两个之中的任何一个不一定是结果,还有一种情况就是跨越边界的最大子列和,找到这三个结果,最后的结果一定是这三个数中间最大的那一个。
int findMax(int a, int b, int c){
return max(a, max(b, c));
}
int DivideCon(int a[], int left, int right){
int MaxleftSum, MaxrightSum, MaxmidSum, center;
if(left == right){
if(a[left] > 0) return a[left]; // 递归终止标志,左边只有一个数
else return 0; // 负数则返回0
}
center = (left+right) / 2;
MaxleftSum = DivideCon(a, left, center); // 左边最大值
MaxrightSum = DivideCon(a, center+1, right); // 右边最大值
// 跨越中点的最大值
int Maxmidleft=0, Maxmid1=0;
for(int i = center; i >= 0; i--){
Maxmidleft += a[i];
if(Maxmidleft > Maxmid1){
Maxmid1 = Maxmidleft;
}
}
int Maxmidright=0, Maxmid2=0;
for(int i = center+1; i <= right; i++){
Maxmidright += a[i];
if(Maxmidright > Maxmid2){
Maxmid2 = Maxmidright;
}
}
return findMax(MaxleftSum, MaxrightSum, Maxmid1+Maxmid2);
}
int Divide(int a[],int len){
return DivideCon(a,0,len);
}
思路4:在线处理
算法复杂度为 O(n),是我们可能得到的一个最快的算法;但它是有副作用的,那就是它的正确性不是特别的明显,理解困难
在线:指每输入一个数据就进行即时处理 ,在任何一个地方终止输入,算法都能正确的给出当前的解。
int MaxSubseqSum4(int a[], int n){
int Max=0, timeMax=0;
for(int i = 0; i < n; i++){
timeMax += a[i]; /*向右累加*/
if(timeMax > Max)
Max = timeMax; /*发现更大和则更新当前结果*/
else if(timeMax < 0) /*如果当前子列和为负*/
timeMax = 0; /*则不可能使后面的部分和增大,抛弃*/
}
return Max;
}